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Overview

Last time:
I Linear Smoothers

I Local Averages
I Local Regression
I Penalized Regression

Today:
I Cross-Validation
I Variance Estimation
I Confidence Bands
I Bootstrap Confidence Bands



Nonlinear Regression

I We are given n pairs of observations (x1,Y1), . . . , (xn,Yn)
I The covariates xi are fixed
I The response variable is related to the covariate

Yi = r(xi ) + εi E(εi ) = 0, i = 1, . . . , n

with r being the regression function
I For now, assume that variance Var(εi ) = σ2 is independent of x



Choosing the Smoothing Parameter

I The choice of kernel is not too important
I Estimates obtained by using different kernels are usually

numerically very similar
I Can be confirmed by theoretical calculations showing that risk

is insensitive to choice of kernel
I Choice of bandwidth matters which controls the amount of

smoothing
I Small bandwidths give very rough estimates while larger

bandwidths give smoother estimates



Choosing the Smoothing Parameter

I If the bandwidth is small
I r̂n(x0) is an average of a small number of Yi close to x0
I The variance will be relatively large, close to that of an

individual Yi
I The bias will tend to be small, because a close r(xi ) should be

similar to r(x0)

I If the bandwidth is large
I The variance of r̂n(x0) will be small relative to the variance of

any Yi , because of the effects of averaging
I The bias will be higher, because we are now using observations

xi further from x0, and there is no guarantee that r(xi ) will be
close to r(x0)



Choosing the Smoothing Parameter
I The smoothers depend on some smoothing parameter h
I We define a risk

R(h) = E
(
1
n

n∑
i=1

(r̂n(xi )− r(xi ))2
)

I Ideally, we would like to choose h to minimize R(h)
I But R(h) depends on unknown function r(x)
I Instead we minimize an estimate R̂(h)
I As first guess, we might try minimizing the training error

1
n

n∑
i=1

(Yi − r̂n(xi ))2

I This is a poor estimator, because it overfits (undersmoothing)
I We use the data twice: to estimate the function and to

estimate the risk



Choosing the Smoothing Parameter
I A better idea is to use leave-one-out cross-validation

cv = R̂(h) = 1
n

n∑
i=1

(Yi − r̂(−i)(xi ))2

with r̂(−i) estimator obtained by omitting the ith pair (xi ,Yi )
I Define

r̂(−i) =
n∑

j=1
Yj lj,(−i)(x)

I and we set the weight on xi to 0 and renormalize the other
weights to sum to one

lj,(−i)(x) =

0 if j = i
lj (x)∑

k 6=i lk(x) if j 6= i

I Cross-validation is approximately the predictive risk (predicting
the left-one-out observation)



Choosing the Smoothing Parameter

I We can compute leave-one-out cross-validation without leaving
one observation out

R̂(h) = 1
n

n∑
i=1

(Yi − r̂n(xi )
1− Lii

)
I This is exactly true not an approximation!
I After some algebra, we can see that

r̂(xi ) = (1− Lii )r̂(−i)(xi ) + LiiYi



Variance Estimation

I There are several variance estimators for linear smoothers
I Let r̂n(x) be a linear smoother
I A consistent estimator (converges in probability to the true

value of the parameter) of σ2 is

σ̂2 =
∑n

i=1(Yi − r̂n(xi ))2

n − 2ν + ν̃

I with
ν = tr(L), ν̃ = tr(LT L) =

n∑
i=1
‖l(xi )‖2

I and if r is sufficiently smooth



Variance Estimation

I The expected value of our estimator is

E(σ̂2) = E(Y T ΛY )
tr(Λ) = σ2 + rT Λr

n − 2ν + ν̃

with
Λ = (I − L)T (I − L)

and
E(Y T QY ) = tr(QV ) + µT Qµ

where V = Var(Y ) is covariance matrix of Y and µ = E(Y ) is
the mean vector

I Assuming that ν and ν̂ do not grow too quickly, and that r is
smooth, the second term is small for large n

I So E(σ̂2) ≈ σ2

I and one can show that Var(σ̂2)→ 0



Variance Estimation

I Another variance estimator (order xi ’s)

σ̂2 = 1
2(n − 1)

n−1∑
i=1

(Yi+1 − Yi )2

I Assuming r is smooth

Yi+1 − Yi = [r(xi+1) + εi+1]− [r(xi ) + εi ] ≈ εi+1 − εi

I Therefore

E(Yi+1 − Yi ) ≈ E(εi+1) + E(εi ) = 2σ2



Confidence Bands

I Variability bands
r̂n(x)± 2σ̂(x)

I There is a problem with that

r̂n(x)− r(x)
σ̂(x) = r̂n(x)− r̄n(x)

σ̂(x) + r̄n(x)− r(x)
σ̂(x)

with r̄n(x) being the mean
I First term converges to a normal
I If we do a good job trading off bias and variance, the second

term doesn’t vanish with large n

r̄n(x)− r(x)
σ̂(x) = Bias(r̂n(x))√

Variance(r̂n(x))



Confidence Bands

I The result is that the confidence interval will not be centered
around the true function r due to the smoothing bias

I Possible solutions:

1. Accept the fact that confidence band is for r̄n not r
2. Estimate bias (this is difficult because it involves estimating

r ′′(x))
3. Undersmooth: less smoothing will bias results less, and

asymptotically the bias will decrease faster than the variance

I We will go with the first approach



Constructing Confidence Bands

I For linear smoother r̂n(x) with

r̄(x) = E(r̂n(x)) =
n∑

i=1
li (x)r(xi )

and assuming constant variance

Var(r̂n(x)) = σ2‖l(x)‖2

I Consider confidence bands

I(x) = (r̂n(x)− cσ̂‖l(x)‖, r̂n(x) + cσ̂‖l(x)‖)

for some c and a ≤ x ≤ b



Constructing Confidence Bands
I For now, suppose that σ is known, then probability of estimate

not in confidence band in at least one position x

P(r̄(x) /∈ I(x) for some x ∈ [a, b]) = P
(

max
x∈[a,b]

|r̂(x)− r̄ |
σ‖l(x)‖ > c

)

I We are left just with the error term

= P
(

max
x∈[a,b]

|
∑

i εi li (x)|
σ‖l(x)‖ > c

)
= P

(
max

x∈[a,b]
|W (x)| > c

)

I This is a Gaussian process: a random function such that the
vector (W (x1), . . . ,W (xk)) has a multivariate normal
distribution, for any finite set of points x1, . . . , xk

W (x) =
n∑

i=1
ZiTi (x), Zi = εi/σ ∼ N(0, 1), Ti (x) = li (x)‖l(x)‖



Constructing Confidence Bands

I We want to find c for a fixed probability
I We need to compute the distribution of the maximum of a

Gaussian process
I This is a well studied problem

I Hotelling wrote about in 1939 (Tubes and spheres in n-spaces
and a class of statistical problems)

I There is a book treatment on this by Adler and Taylor (Random
Fields And Geometry) connecting probability, geometry, and
topology

I In our neuroimaging example, we used permutation test to find
maximum voxel clusters



Constructing Confidence Bands

I One can show that (cdf of the standard normal Φ)

P
(
max

x

∣∣∣∣∣
n∑

i=1
ZiTi (x)

∣∣∣∣∣ > c
)
≈ 2(1− Φ(c)) + κ0

π
e−c2/2

for large c, κ0 =
∫ b

a ‖T ′(x)‖dx , and T ′(x) = ∂Ti (x)/∂x
I Think of T (x) as a curve in Rn, and c as defining a tube

around it with radius c
I Intuition: The task is to calculate the volume of this tube
I We choose c by solving for α (e.g. α = 0.05)

2(1− Φ(c)) + κ0
π

e−c2/2 = α



Constructing Confidence Bands

I So far we assumed that σ was known
I If unknown, we can use an estimate σ̂
I In this setting, one replaces the normal distribution with the

t-distribution, however, for large n the previous approach
remains a good approximation

I For changing variance σ(x) as a function of x ,

Var(r̂n(x)) =
n∑

i=1
σ2(xi )l2

i (x)

I Then this confidence is used

I(x) = r̂n(x)± c

√√√√ n∑
i=1

σ̂2(xi )l2
i (x)

with c computed the same way



Average Coverage

I So far we required coverage bands to cover the function at all x
I We can relax this requirement a bit
I Suppose we are estimating r(x) over an interval [0, 1], then

average coverage is defined as

C =
∫ 1

0
P(r(x) ∈ [d(x), u(x)])dx



Bootstrap Confidence Bands

I There are at least two different ways to implement the
boostrap for regression problems

I Resample rows:
I Assume both Y and X are random
I Rows need to be iid

I Resample residuals:
I Assume that only Y is random and x is fixed
I Errors need to be iid



Bootstrap Confidence Bands (Example)

I Experiment with n = 164 men to see if the drug
cholostyramine lowered blood cholesterol levels

I They were supposed to take six packets of cholostyramine per
day, but many actually took much less



Bootstrap Confidence Bands (Example)
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Bootstrap Confidence Bands (Example)
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