Nonlinear Regression (Part 3)

Christof Seiler

Stanford University, Spring 2016, STATS 205

Overview

Last time:

- Linear Smoothers
 - Local Averages
 - Local Regression
 - Penalized Regression

Today:

- Cross-Validation
- Variance Estimation
- Confidence Bands
- ► Bootstrap Confidence Bands

Nonlinear Regression

- ▶ We are given *n* pairs of observations $(x_1, Y_1), \dots, (x_n, Y_n)$
- ▶ The covariates *x_i* are fixed
- ► The **response variable** is related to the **covariate**

$$Y_i = r(x_i) + \epsilon_i$$
 $E(\epsilon_i) = 0, i = 1, ..., n$

with r being the **regression function**

▶ For now, assume that variance $Var(\epsilon_i) = \sigma^2$ is independent of x

- The choice of kernel is not too important
- Estimates obtained by using different kernels are usually numerically very similar
- Can be confirmed by theoretical calculations showing that risk is insensitive to choice of kernel
- Choice of bandwidth matters which controls the amount of smoothing
- Small bandwidths give very rough estimates while larger bandwidths give smoother estimates

- If the bandwidth is small
 - $ightharpoonup \widehat{r}_n(x_0)$ is an average of a small number of Y_i close to x_0
 - ► The variance will be relatively large, close to that of an individual *Y_i*
 - ▶ The bias will tend to be small, because a close $r(x_i)$ should be similar to $r(x_0)$
- If the bandwidth is large
 - ▶ The variance of $\hat{r}_n(x_0)$ will be small relative to the variance of any Y_i , because of the effects of averaging
 - ▶ The bias will be higher, because we are now using observations x_i further from x_0 , and there is no guarantee that $r(x_i)$ will be close to $r(x_0)$

- ▶ The smoothers depend on some smoothing parameter h
- We define a risk

$$R(h) = E\left(\frac{1}{n}\sum_{i=1}^{n}(\widehat{r}_{n}(x_{i}) - r(x_{i}))^{2}\right)$$

- ▶ Ideally, we would like to choose h to minimize R(h)
- ▶ But R(h) depends on unknown function r(x)
- ▶ Instead we minimize an estimate $\widehat{R}(h)$
- As first guess, we might try minimizing the training error

$$\frac{1}{n}\sum_{i=1}^n(Y_i-\widehat{r_n}(x_i))^2$$

- ▶ This is a poor estimator, because it overfits (undersmoothing)
- ► We use the data twice: to estimate the function and to estimate the risk

▶ A better idea is to use leave-one-out cross-validation

$$cv = \widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{r}_{(-i)}(x_i))^2$$

with $\widehat{r}_{(-i)}$ estimator obtained by omitting the *i*th pair (x_i, Y_i)

Define

$$\widehat{r}_{(-i)} = \sum_{j=1}^{n} Y_{j} I_{j,(-i)}(x)$$

▶ and we set the weight on x_i to 0 and renormalize the other weights to sum to one

$$I_{j,(-i)}(x) = \begin{cases} 0 & \text{if } j = i \\ \frac{I_j(x)}{\sum_{k \neq i} I_k(x)} & \text{if } j \neq i \end{cases}$$

► Cross-validation is approximately the predictive risk (predicting the left-one-out observation)

 We can compute leave-one-out cross-validation without leaving one observation out

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \widehat{r}_n(x_i)}{1 - L_{ii}} \right)$$

- ▶ This is exactly true not an approximation!
- After some algebra, we can see that

$$\widehat{r}(x_i) = (1 - L_{ii})\widehat{r}_{(-i)}(x_i) + L_{ii}Y_i$$

Variance Estimation

- ▶ There are several variance estimators for linear smoothers
- Let $\hat{r}_n(x)$ be a linear smoother
- A consistent estimator (converges in probability to the true value of the parameter) of σ^2 is

$$\widehat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \widehat{r}_n(x_i))^2}{n - 2\nu + \widetilde{\nu}}$$

with

$$\nu = \text{tr}(L), \tilde{\nu} = \text{tr}(L^T L) = \sum_{i=1}^n ||I(x_i)||^2$$

and if r is sufficiently smooth

Variance Estimation

The expected value of our estimator is

$$\mathsf{E}(\widehat{\sigma}^2) = \frac{\mathsf{E}(Y^T \wedge Y)}{\mathsf{tr}(\Lambda)} = \sigma^2 + \frac{r^T \wedge r}{n - 2\nu + \widetilde{\nu}}$$

with

$$\Lambda = (I - L)^T (I - L)$$

and

$$\mathsf{E}(Y^TQY) = \mathsf{tr}(QV) + \mu^T Q \mu$$

where V = Var(Y) is covariance matrix of Y and $\mu = \text{E}(Y)$ is the mean vector

- Assuming that ν and $\widehat{\nu}$ do not grow too quickly, and that r is smooth, the second term is small for large n
- ▶ So E($\hat{\sigma}^2$) $\approx \sigma^2$
- and one can show that $Var(\widehat{\sigma^2}) \to 0$

Variance Estimation

Another variance estimator (order x_i's)

$$\hat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (Y_{i+1} - Y_i)^2$$

Assuming r is smooth

$$Y_{i+1} - Y_i = [r(x_{i+1}) + \epsilon_{i+1}] - [r(x_i) + \epsilon_i] \approx \epsilon_{i+1} - \epsilon_i$$

▶ Therefore

$$\mathsf{E}(Y_{i+1}-Y_i)\approx \mathsf{E}(\epsilon_{i+1})+\mathsf{E}(\epsilon_i)=2\sigma^2$$

Confidence Bands

Variability bands

$$\hat{r}_n(x) \pm 2\hat{\sigma}(x)$$

There is a problem with that

$$\frac{\widehat{r}_n(x) - r(x)}{\widehat{\sigma}(x)} = \frac{\widehat{r}_n(x) - \overline{r}_n(x)}{\widehat{\sigma}(x)} + \frac{\overline{r}_n(x) - r(x)}{\widehat{\sigma}(x)}$$

with $\bar{r}_n(x)$ being the mean

- First term converges to a normal
- ▶ If we do a good job trading off bias and variance, the second term doesn't vanish with large *n*

$$\frac{\bar{r}_n(x) - r(x)}{\hat{\sigma}(x)} = \frac{\mathsf{Bias}(\hat{r}_n(x))}{\sqrt{\mathsf{Variance}(\hat{r}_n(x))}}$$

Confidence Bands

- ► The result is that the confidence interval will not be centered around the true function *r* due to the smoothing bias
- Possible solutions:
- 1. Accept the fact that confidence band is for \bar{r}_n not r
- 2. Estimate bias (this is difficult because it involves estimating r''(x))
- 3. Undersmooth: less smoothing will bias results less, and asymptotically the bias will decrease faster than the variance
- ▶ We will go with the first approach

▶ For linear smoother $\hat{r}_n(x)$ with

$$\overline{r}(x) = \mathsf{E}(\widehat{r}_n(x)) = \sum_{i=1}^n l_i(x) r(x_i)$$

and assuming constant variance

$$Var(\widehat{r}_n(x)) = \sigma^2 ||I(x)||^2$$

Consider confidence bands

$$\mathcal{I}(x) = (\hat{r}_n(x) - c\hat{\sigma} || I(x) ||, \hat{r}_n(x) + c\hat{\sigma} || I(x) ||)$$

for some c and $a \le x \le b$

For now, suppose that σ is known, then probability of estimate not in confidence band in at least one position x

$$P(\overline{r}(x) \notin \mathcal{I}(x) \text{ for some } x \in [a,b]) = P\left(\max_{x \in [a,b]} \frac{|\widehat{r}(x) - \overline{r}|}{\sigma \|I(x)\|} > c\right)$$

We are left just with the error term

$$= \mathsf{P}\left(\max_{x \in [a,b]} \frac{|\sum_{i} \epsilon_{i} l_{i}(x)|}{\sigma \|l(x)\|} > c\right) = \mathsf{P}\left(\max_{x \in [a,b]} |W(x)| > c\right)$$

▶ This is a Gaussian process: a random function such that the vector $(W(x_1), \ldots, W(x_k))$ has a multivariate normal distribution, for any finite set of points x_1, \ldots, x_k

$$W(x) = \sum_{i=1}^{n} Z_i T_i(x), \quad Z_i = \epsilon_i / \sigma \sim N(0,1), \quad T_i(x) = I_i(x) \|I(x)\|$$

- ▶ We want to find *c* for a fixed probability
- We need to compute the distribution of the maximum of a Gaussian process
- ► This is a well studied problem
 - ► Hotelling wrote about in 1939 (Tubes and spheres in *n*-spaces and a class of statistical problems)
 - There is a book treatment on this by Adler and Taylor (Random Fields And Geometry) connecting probability, geometry, and topology
 - In our neuroimaging example, we used permutation test to find maximum voxel clusters

lacktriangle One can show that (cdf of the standard normal Φ)

$$P\left(\max_{x}\left|\sum_{i=1}^{n}Z_{i}T_{i}(x)\right|>c\right)\approx 2(1-\Phi(c))+\frac{\kappa_{0}}{\pi}e^{-c^{2}/2}$$

for large c, $\kappa_0 = \int_a^b \|T'(x)\| dx$, and $T'(x) = \partial T_i(x)/\partial x$

- ▶ Think of T(x) as a curve in \mathbb{R}^n , and c as defining a tube around it with radius c
- ▶ Intuition: The task is to calculate the volume of this tube
- We choose c by solving for α (e.g. $\alpha = 0.05$)

$$2(1 - \Phi(c)) + \frac{\kappa_0}{\pi} e^{-c^2/2} = \alpha$$

- \blacktriangleright So far we assumed that σ was known
- ▶ If unknown, we can use an estimate $\hat{\sigma}$
- ▶ In this setting, one replaces the normal distribution with the *t*-distribution, however, for large *n* the previous approach remains a good approximation
- ▶ For changing variance $\sigma(x)$ as a function of x,

$$Var(\hat{r}_n(x)) = \sum_{i=1}^n \sigma^2(x_i) l_i^2(x)$$

Then this confidence is used

$$\mathcal{I}(x) = \hat{r}_n(x) \pm c \sqrt{\sum_{i=1}^n \hat{\sigma}^2(x_i) I_i^2(x)}$$

with c computed the same way

Average Coverage

- So far we required coverage bands to cover the function at all x
- We can relax this requirement a bit
- ▶ Suppose we are estimating r(x) over an interval [0,1], then average coverage is defined as

$$C = \int_0^1 \mathsf{P}(r(x) \in [d(x), u(x)]) dx$$

Bootstrap Confidence Bands

- ► There are at least two different ways to implement the boostrap for regression problems
- Resample rows:
 - ▶ Assume both *Y* and *X* are random
 - Rows need to be iid
- Resample residuals:
 - Assume that only Y is random and x is fixed
 - Errors need to be iid

Bootstrap Confidence Bands (Example)

- ► Experiment with *n* = 164 men to see if the drug cholostyramine lowered blood cholesterol levels
- ► They were supposed to take six packets of cholostyramine per day, but many actually took much less

Bootstrap Confidence Bands (Example)

Resample Rows Bootstrap

Bootstrap Confidence Bands (Example)

Resample Residuals Bootstrap

References

- ▶ Wasserman (2006). All of Nonparametric Statistics
- ▶ Efron and Tibshirani (1994). An Introduction to the Bootstrap