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Overview

Last time:
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Nonlinear Regression

» We are given n pairs of observations (x1, Y1), ..., (Xn, Yn)
» The covariates x; are fixed
» The response variable is related to the covariate
Y,':I’(X,')-|-€,' E(E;):O,i:].,...,n
with r being the regression function
» For now, assume that variance Var(¢;) = o2 is independent of x



Choosing the Smoothing Parameter

» The choice of kernel is not too important

» Estimates obtained by using different kernels are usually
numerically very similar

» Can be confirmed by theoretical calculations showing that risk
is insensitive to choice of kernel

» Choice of bandwidth matters which controls the amount of
smoothing

» Small bandwidths give very rough estimates while larger
bandwidths give smoother estimates



Choosing the Smoothing Parameter

» If the bandwidth is small

» Th(xo) is an average of a small number of Y; close to xg

» The variance will be relatively large, close to that of an
individual Y;

» The bias will tend to be small, because a close r(x;) should be
similar to r(xo)

» If the bandwidth is large

» The variance of 7,(xo) will be small relative to the variance of
any Y, because of the effects of averaging

» The bias will be higher, because we are now using observations
x; further from xg, and there is no guarantee that r(x;) will be
close to r(xp)



Choosing the Smoothing Parameter

» The smoothers depend on some smoothing parameter h
» We define a risk
R(h)=E{ - > (Falxi) = r(x))

i=1

Ideally, we would like to choose h to minimize R(h)

But R(h) depends on unknown function r(x)

Instead we minimize an estimate R(h)

As first guess, we might try minimizing the training error
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» This is a poor estimator, because it overfits (undersmoothing)
» We use the data twice: to estimate the function and to
estimate the risk



Choosing the Smoothing Parameter

» A better idea is to use leave-one-out cross-validation
cv Z(Y _iy(xi))?

with 7_;y estimator obtained by omitting the ith pair (x;, Y})
» Define

Ty = Vil
j=1

» and we set the weight on x; to 0 and renormalize the other
weights to sum to one

| ) 0 ifj=1i
j,(—i) X) = Ij(x) e .
72@‘ el if j£i

» Cross-validation is approximately the predictive risk (predicting
the left-one-out observation)



Choosing the Smoothing Parameter

> We can compute leave-one-out cross-validation without leaving
one observation out

oL ()

» This is exactly true not an approximation!
» After some algebra, we can see that

T(x)=(1- Lii)?(—i)(xi) + L;Y;



Variance Estimation

» There are several variance estimators for linear smoothers
> Let 7,(x) be a linear smoother
» A consistent estimator (converges in probability to the true
value of the parameter) of o2 is
= 2
2 S (Y= Talx)
n—2v+7v
> with .
v =tr(L),5 = tr(LTL) = 3 [lI)|?
i=1
» and if r is sufficiently smooth



Variance Estimation

» The expected value of our estimator is

E(YTAY) r"Ar
E =2\ _ — 52
() tr(A) ? +n—21/+17
with
AN=(-0LT(1-1)
and

E(YTQY)=tr(QV)+ 1 Qu

where V = Var(Y) is covariance matrix of Y and p = E(Y) is
the mean vector

» Assuming that v and 7 do not grow too quickly, and that r is
smooth, the second term is small for large n

» So E(6?) ~ o2

» and one can show that Var(c?) — 0



Variance Estimation

» Another variance estimator (order x;'s)

n—1 Z i+1 —

> Assuming r is smooth

Yier = Yi = [r(xit1) + €ip1] = [r(xi) + €] = €iv1 — €

» Therefore

E(Yit1 — Yi) = E(eir1) + E(e;) = 20°



Confidence Bands

» Variability bands
Tn(x) £ 25(x)
» There is a problem with that

In(x) = r(x) _ Ta(x) = Fa(x) | Tn(x) = r(x)
ax) ) (x)
with 7,(x) being the mean
> First term converges to a normal

» If we do a good job trading off bias and variance, the second
term doesn’t vanish with large n

Tn(x) —r(x)  Bias(7s(x))

a(x) Variance(7p(x))




Confidence Bands

» The result is that the confidence interval will not be centered
around the true function r due to the smoothing bias
» Possible solutions:

1. Accept the fact that confidence band is for 7, not r
2. Estimate bias (this is difficult because it involves estimating

r'(x))
3. Undersmooth: less smoothing will bias results less, and
asymptotically the bias will decrease faster than the variance

> We will go with the first approach



Constructing Confidence Bands

» For linear smoother 7,(x) with

F(x) = E(7a(x Z li(x)r(xi)
and assuming constant variance
Var(7a(x)) = o?[[1(x)]?
» Consider confidence bands
Z(x) = (Fa(x) = ca[[/(x)l,Ta(x) + cal[/(x)]])

forsome cand a< x < b



Constructing Confidence Bands

» For now, suppose that o is known, then probability of estimate
not in confidence band in at least one position x

P(r(x) ¢ Z(x) for some x € [a,b]) =P ( max |?( ) — 7| c)

xelab) ol[l(x)]|

» We are left just with the error term

—P(max|z€,( )’>c>—P<max]W( )]>c>

x€|a,b] UH/(X)H x€[a,b]

» This is a Gaussian process: a random function such that the
vector (W(x1),..., W(xk)) has a multivariate normal
distribution, for any finite set of points xi, ..., xk

ZZ Ti(x =€i/o~ N(0,1), Ti(x) = hi(x)I(x)]]



Constructing Confidence Bands

» We want to find c for a fixed probability

» We need to compute the distribution of the maximum of a
Gaussian process

» This is a well studied problem

» Hotelling wrote about in 1939 (Tubes and spheres in n-spaces
and a class of statistical problems)

» There is a book treatment on this by Adler and Taylor (Random
Fields And Geometry) connecting probability, geometry, and
topology

> In our neuroimaging example, we used permutation test to find
maximum voxel clusters



Constructing Confidence Bands

v

One can show that (cdf of the standard normal @)

P (max
X .

Z Z,' T,'(X)

™

> c) ~2(1—-9(c))+ H0 e/

for large ¢, ko = [2|| T'(x)||dx, and T'(x) = 8T(x)/x
Think of T(x) as a curve in R", and c¢ as defining a tube
around it with radius ¢

Intuition: The task is to calculate the volume of this tube
We choose ¢ by solving for « (e.g. a = 0.05)
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Constructing Confidence Bands

» So far we assumed that o was known

> If unknown, we can use an estimate &

> In this setting, one replaces the normal distribution with the
t-distribution, however, for large n the previous approach
remains a good approximation

» For changing variance o(x) as a function of x,

Var(7p(x Za X;) /2

» Then this confidence is used

with ¢ computed the same way



Average Coverage

» So far we required coverage bands to cover the function at all x

» We can relax this requirement a bit

» Suppose we are estimating r(x) over an interval [0, 1], then
average coverage is defined as

1
C= /0 P(r(x) € [d(x), u(x)])dx



Bootstrap Confidence Bands

> There are at least two different ways to implement the
boostrap for regression problems
> Resample rows:

» Assume both Y and X are random
» Rows need to be iid

» Resample residuals:

» Assume that only Y is random and x is fixed
» Errors need to be iid



Bootstrap Confidence Bands (Example)

» Experiment with n = 164 men to see if the drug
cholostyramine lowered blood cholesterol levels

» They were supposed to take six packets of cholostyramine per
day, but many actually took much less



Bootstrap Confidence Bands (Example)

Resample Rows Bootstrap
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Bootstrap Confidence Bands (Example)

Resample Residuals Bootstrap
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