Time to Event Analysis (Part 2)

Christof Seiler

Stanford University, Spring 2016, STATS 205

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Overview

Last time:

- Survival data
- Survival function
- Hazard function
- Kaplan-Meier estimator
- Today:
 - Confidence bands with the Boostrap

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Comparison of survival curves

Confidence bands with the Boostrap

Efron 1981 on Channing house data

##		sex	entry	exit	time	cens	
##	1	Male	782	909	127	1	
##	2	Male	1020	1128	108	1	
##	3	Male	856	969	113	1	
##	4	Male	915	957	42	1	
##	5	Male	863	983	120	1	
##	6	Male	906	1012	106	1	

- 97 men in retirement house in Palo Alto
- ▶ From opening 1964 until data collection day in July 1975
- 46 were observed exactly, the men died while in the Channing house
- The remaining 51 were censored, five moved elsewhere, and 46 were still alive at data collection day

Confidence bands with the Boostrap

Channing House Men

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Confidence bands with the Boostrap

- The quantify of interest was the median survival time
- Randomly censored data consist of iid pairs of observations (X_i, δ_i), i = 1, δ, n,
 - if $\delta_i = 0$ then X_i denotes a censored observation, and
 - if $\delta_i = 1$ then X_i denotes an exact "survival" time
- Efron takes a random sample with replacement from $(X_1, \delta_1), \ldots, (X_n, \delta_n)$
- Then recomputes the survival function on the bootstrap sample

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 There are theoretical developements by Akritas in 1986 showing that the boostrap approach works

- We could use use our asymptotic results on the KM estimator $\hat{S}(t)$ from last time or the bootstrap esimator to devise a test equality of survivar function at some time t
- But taking advantage of the entire function will make more efficient use of the data
- The most commonly used statistics are based on nonparametric rank tests

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Let failure time $t_1 < \cdots < t_k$ over both samples
- We construct contingency tables at every event time t_i
- d_{0i} and d_{1i} are the number of deaths in group 0 and 1
- n_{0i} and n_{1i} are the number at risk in groups 0 and 1

Group	Failures	Survivors	Total
0	d _{0i}	$n_{0i} - d_{0i}$	n _{0i}
1	d_{1i}	$n_{1i} - d_{1i}$	n _{1i}
Total	di	$n_i - d_i$	ni

A D N A 目 N A E N A E N A B N A C N

► Under the null hypothesis S₁(t) = S₀(t), 0 < t < ∞, d_{1i} follows a hypergeometric distribution conditional on the margins

With the hypergeometric distribution we can get

$$E_i = \mathsf{E}(d_{1i}) = n_{0i} \frac{d_i}{n_i}$$

$$V_i = Var(d_{1i}) = rac{\sum_{i=1}^k n_{1i} n_{0i} d_i (n_i - d_i)}{n_i^2 (n_i - 1)}$$

• And observed is $O_i = d_{0i}$

 Using this expectation and variances and summing over all timepoints t_k, we get the log rank statistics

$$\chi^{2} = \frac{\left(\sum_{i=1}^{k} (O_{i} - E_{i})\right)^{2}}{\sum_{i=1}^{k} V_{i}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Symmetric in two groups
- The log rank statistic depends on ranks of event times only
- O E from the k two by two tables are treated as independent
- The O E in the numberator can be written as

$$\frac{d_{0i}d_{1i}}{d_i}(\widehat{\lambda}_{1i}-\widehat{\lambda}_{0i})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

So it quantifies the sums of differences in the hazard function over all k time points scaled by by the fraction of failures

Log Rank Test (Example)

- Study: Patients who had survived a lobar intracerebral hemorrhage and whose genotype was known
- Data: Survival times (in months) for 71 subjects
- **Event**: Time until recurrence of lobar intracerebral hemorrhage
- Question: Genetic effect on recurrence in two gropus with different genotype
- One subject's genotype information is missing and is excluded from analysis
- Of the remaining 70 subjects, 32 are in Group 1 and 38 are in Group 2
- A+ sign indicates a censored observation; meaning that at that point in time the subject had yet to report recurrence

Log Rank Test (Example)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへ()~

Log Rank Test (Example)

```
## Call:
## survdiff(formula = Surv(time, recur) ~ genotype)
##
## n=70, 1 observation deleted due to missingness.
##
## N Observed Expected (0-E)^2/E (0-E)^2/V
## genotype=0 32 4 9.28 3.00 6.28
## genotype=1 38 14 8.72 3.19 6.28
##
## Chisq= 6.3 on 1 degrees of freedom, p= 0.0122
```

- ► Note that the log-rank test statistic is 6.3 with p-value 0.0122 based on a null χ²-distribution with 1 degree of freedom
- Thus the log-rank test confirms the difference in survival time of the two groups

References

- The Statistical Analysis of Failure Time Data (2002). Kalbfleisch and Prentice
- Lecture Notes (2005). Ibrahim
- ▶ Efron (1981). Censored Data and the Bootstrap
- Akritas (1986). Bootstrapping the Kaplan-Meier Estimator

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00