Overview

- Last time:
 - Survival data
 - Survival function
 - Hazard function
 - Kaplan-Meier estimator

- Today:
 - Confidence bands with the Bootstrap
 - Comparison of survival curves
Confidence bands with the Bootstrap

- Efron 1981 on Channing house data

sex entry exit time cens
1 Male 782 909 127 1
2 Male 1020 1128 108 1
3 Male 856 969 113 1
4 Male 915 957 42 1
5 Male 863 983 120 1
6 Male 906 1012 106 1

- 97 men in retirement house in Palo Alto
- From opening 1964 until data collection day in July 1975
- 46 were observed exactly, the men died while in the Channing house
- The remaining 51 were censored, five moved elsewhere, and 46 were still alive at data collection day
Confidence bands with the Bootstrap

Channing House Men

Time (in Months)
Probability of Survival
Confidence bands with the Bootstrap

- The quantify of interest was the median survival time
- Randomly censored data consist of iid pairs of observations \((X_i, \delta_i), i = 1, \delta, n,\)
 - if \(\delta_i = 0\) then \(X_i\) denotes a censored observation, and
 - if \(\delta_i = 1\) then \(X_i\) denotes an exact “survival” time
- Efron takes a random sample with replacement from \((X_1, \delta_1), \ldots, (X_n, \delta_n)\)
- Then recomputes the survival function on the bootstrap sample
- There are theoretical developments by Akritas in 1986 showing that the bootstrap approach works
Log Rank Test

- We could use our asymptotic results on the KM estimator $\hat{S}(t)$ from last time or the bootstrap estimator to devise a test for equality of survival functions at some time t.
- But taking advantage of the entire function will make more efficient use of the data.
- The most commonly used statistics are based on nonparametric rank tests.
Log Rank Test

- Let failure time $t_1 < \cdots < t_k$ over both samples
- We construct contingency tables at every event time t_i
- d_{0i} and d_{1i} are the number of deaths in group 0 and 1
- n_{0i} and n_{1i} are the number at risk in groups 0 and 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Failures</th>
<th>Survivors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>d_{0i}</td>
<td>$n_{0i} - d_{0i}$</td>
<td>n_{0i}</td>
</tr>
<tr>
<td>1</td>
<td>d_{1i}</td>
<td>$n_{1i} - d_{1i}$</td>
<td>n_{1i}</td>
</tr>
<tr>
<td>Total</td>
<td>d_i</td>
<td>$n_i - d_i$</td>
<td>n_i</td>
</tr>
</tbody>
</table>

- Under the null hypothesis $S_1(t) = S_0(t), 0 < t < \infty$, d_{1i} follows a hypergeometric distribution conditional on the margins
Log Rank Test

- With the hypergeometric distribution we can get

\[E_i = E(d_{1i}) = n_{0i} \frac{d_i}{n_i} \]

\[V_i = \text{Var}(d_{1i}) = \sum_{i=1}^{k} \frac{n_{1i} n_{0i} d_i (n_i - d_i)}{n_i^2 (n_i - 1)} \]

- And observed is \(O_i = d_{0i} \)

- Using this expectation and variances and summing over all timepoints \(t_k \), we get the log rank statistics

\[\chi^2 = \frac{\left(\sum_{i=1}^{k} (O_i - E_i) \right)^2}{\sum_{i=1}^{k} V_i} \]
Log Rank Test

- Symmetric in two groups
- The log rank statistic depends on ranks of event times only
- $O - E$ from the k two by two tables are treated as independent
- The $O - E$ in the numerator can be written as

$$\frac{d_0i d_{1i}}{d_i} (\hat{\lambda}_{1i} - \hat{\lambda}_{0i})$$

- So it quantifies the sums of differences in the hazard function over all k time points scaled by the fraction of failures
Log Rank Test (Example)

- **Study**: Patients who had survived a lobar intracerebral hemorrhage and whose genotype was known
- **Data**: Survival times (in months) for 71 subjects
- **Event**: Time until recurrence of lobar intracerebral hemorrhage
- **Question**: Genetic effect on recurrence in two groups with different genotype
- One subject’s genotype information is missing and is excluded from analysis
- Of the remaining 70 subjects, 32 are in Group 1 and 38 are in Group 2
- A+ sign indicates a censored observation; meaning that at that point in time the subject had yet to report recurrence
Log Rank Test (Example)
Log Rank Test (Example)

```r
## Call:
## survdiff(formula = Surv(time, recur) ~ genotype)
##
## n=70, 1 observation deleted due to missingness.
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
genotype=0 32 4 9.28 3.00 6.28
genotype=1 38 14 8.72 3.19 6.28

## Chisq= 6.3 on 1 degrees of freedom, p= 0.0122
```

- Note that the log-rank test statistic is 6.3 with p-value 0.0122 based on a null χ^2-distribution with 1 degree of freedom
- Thus the log-rank test confirms the difference in survival time of the two groups
References

- The Statistical Analysis of Failure Time Data (2002). Kalbfleisch and Prentice
- Lecture Notes (2005). Ibrahim
- Akritas (1986). Bootstrapping the Kaplan-Meier Estimator