Ranked Set Sampling

Christof Seiler

Stanford University, Spring 2016, Stats 205

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Keys to any statistical inference most commonly is random sample from the population in question
- Goal is to get the best possible representation of the population for the quantity of interest
- How to collect sample data?
- Are there alternative to a random sample?
- Usually, once the sample items have been chosen, the desired measurements are collected from each of the selected items
- Ranked set sampling: It is not a sampling technique; it is a data measurement techniques

First introduced by McIntyre in 1952 for situations where

- actual measurements for one sample observations is expensive
- ranking observations is cheap
- collecting sample units is cheap and reliable

Example: Bone Mineral Density (BMD) in a human population

- Subjects for such a study are plentiful
- Measurements of BMD via Dual X-ray Absorptiometry (DXA) on selected subject is expensive
- Because we need medical experts (e.g. orthopedic surgeons or anatomists) to manually segment images
- Thus it is important to minimize the number of measurements required for the study without sacrificing information about the BMD makeup of the population

Source: http://webapps.radiology.ucsf.edu/refline/

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Consider random sample X_1, \ldots, X_n
- Additionally to simple random sampling, there is stratified sampling, proportional sampling, and concomitant variable based sampling
- These are different kinds of sampling techniques defined prior to data collection
- Ranked set sampling is a techniques during data collection
- It helps to direct attention toward measurements of more representative units
- As a result, we get measurements that are more likely to span the range of values in the population

Collecting a Ranked Set Sample

- ► To obtain *k* observations from a population
- First, use simple random sampling to select k units from a population
- ► Then, rank order them according to a predefined attribute
- A variety of mechanisms are:
 - Visual comparison
 - Expert opinion
 - Auxiliary variable
 - Cannot involve your quantity of interest!
- The unit that is judged the smallest is included in your ranked set sample
- This first unit is called the first judgement order statistics and denoted by X_[1]
- Square brackets are used because this may not coincide with true order statistics usually denoted by X₍₁₎

Collecting a Ranked Set Sample

- ► The remaining k − 1 units are not considered further (their role was only to assist selecting the smallest ranked unit)
- Then we repeat the same procedure to select the second X_[2] by picking the second smallest judgement order statistic
- And continue this procedure until X_[k]
- One such run sequence $X_{[1]}, \ldots, X_{[k]}$ is called a **cycle**
- This is called a **balanced** ranked set sample since we collect one unit for each rank
- To obtain $n = k \times m$ observations we repeat the entire process

Collecting a Ranked Set Sample (Example)

- Unburned hydrocarbons emitted from automobile tailpipes and via evaporation are among the primary contributions to ozone and smog in large cities
- One way to reduce pollution is to use reformulated gasoline, designed to reduce volatility measured through Reid Vapor Pressure (RVP) value
- To enforce this, regular gasoline samples are taken from pumps at stations and RVP is measured
- There is crude field measure and a more refined lab measure
- The goal is to use the cruder and cheaper measure as a surrogate for the more expansive lab measure in order to reduce the actual amount of lab measures

Collecting a Ranked Set Sample (Example)

Sample number	Field RVP value	Sample number	Field RVP value	
1	7.60	19	7.85	
2	9.25	20	7.86	
3	7.73	21	7.92	
4	7.88	22	7.95	
5	8.89	23	7.85	
6	8.88	24	7.95	
7	9.14	25	7.98	
8	9.15	26	7.80	
9	8.25	27	7.80	
10	8.98	28	8.01	
11	8.63	29	7.96	
12	8.62	30	7.86	
13	7.90	31	8.89	
14	8.01	32	7.89	
15	8.28	33	7.73	
16	8.25	34	9.21	
17	8.17	35	8.01	
18	10.72	36	8.32	

Source: Hollander and Wolfe, and Chicken (2013)

Collecting a Ranked Set Sample (Example)

- Group of triples k = 3 in four cycles m = 4
- Random triples from all 36 original observations

8.98	7.90	7.85	8.63	8.62	8.17	8.25	9.25	7.92
8.28	10.72	8.32	9.21	7.80	8.89	7.95	8.89	8.01
7.95	8.01	7.85	7.86	8.25	7.88	8.01	7.89	9.15
7.73	7.80	7.96	9.14	7.60	8.88	7.73	7.86	7.98

 Circled values are the ranked set sample (these are now send to the lab for further analysis)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

8.98	7.90	7.85	8.63	8.62 8.17	8.25	9.25 7.92
8.28	10.72	8.32	9.21	7.80 8.89	7.95	8.89 8.01
7.95	8.01	7.85	7.86	8.25 7.88	8.01	7.89 9.15
7.73	7.80	7.96	9.14	7.60 (8.88)	7.73	7.86 7.98

Collecting a Ranked Set Sample

Marginal densities of the order statistics X₍₁₎,..., X₍₅₎ for random sample of size 5 from the standard normal

Source: Hollander and Wolfe, and Chicken (2013)

- Two sets of n observations each from a population
- One set X_1, \ldots, X_n is collected using simple random sampling
- The second using balanced ranked set sampling with set size k and cycles m, n = k × m
- Assumptions:
 - Population is continuous with distribution F and density f, finite mean μ, and finite variance σ²
 - All 2n are mutually independent
- Ranked Set Sample (RSS) mean

$$\mu_{\text{RSS}} = \overline{X}_{\text{RSS}} = \sum_{j=1}^{m} \sum_{i=1}^{k} \frac{X_{[i]j}}{km}$$

- The μ_{RSS} is an unbiased estimator for the population mean μ regardless of ranking quality
- This is valid in general, but we'll show it under assumption of perfect rankings
- Meaning that RSS rankings are order statistics: $X_{[i]} = X_{(i)}$
- Consider only one cycle m = 1
- Under perfect rankings assumptions

$$\mathsf{E}(\widehat{\mu}_{\mathsf{RSS}}) = \mathsf{E}(\overline{X}_{\mathsf{RSS}}) = \frac{1}{k} \sum_{i=1}^{k} \mathsf{E}(X^*_{(i)})$$

Since E(X^{*}_(i)) is distributed like the *i*th order statistics for random sample of size *k* from a continuous distribution *F*(*x*) and density *f*(*x*) under perfect ranking (for *i* = 1,..., *k*):

$$\mathsf{E}(X_{(i)}^*) = \int_{-\infty}^{\infty} x \, \frac{k!}{(i-1)!(k-i)!} F(x)^{i-1} (1-F(x))^{k-i} f(x) dx$$

• This can be written as (with q = i - 1)

$$\mathsf{E}(\overline{X}_{\mathsf{RSS}}) = \int_{-\infty}^{\infty} x f(x) \left\{ \sum_{q=0}^{k-1} \binom{k-1}{q} F(x)^q (1-F(x))^{(k-i)-q} \right\} dx$$

► The expression {·} is sum over the entire sample space of the probabilities for a binomial random variable with parameter k - 1 and p = F(x), thus {·} = 1

• Therefore $\hat{\mu}_{\text{RSS}}$ is an unbiased estimator for μ

$$\mathsf{E}(\widehat{\mu}_{\mathsf{RSS}}) = \mathsf{E}(\overline{X}_{\mathsf{RSS}}) = \int_{-\infty}^{\infty} x f(x) dx = \mu$$

To obtain the variance of \$\hat{\mu}_{RSS}\$, mutual independence allows us to write

$$\mathsf{Var}(\overline{X}_{\mathsf{RSS}}) = rac{1}{k^2} \sum_{i=1}^k \mathsf{Var}(X^*_{(i)})$$

Recall bias and variance decomposition

$$\mathsf{E}((X^*_{(i)}-\mu)^2) = (\mathsf{E}(X^*_{(i)})-\mu))^2 + \mathsf{Var}(X^*_{(i)})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Combine

$$\mathsf{Var}(\overline{X}_{\mathsf{RSS}}) = \frac{1}{k^2} \sum_{i=1}^{k} \mathsf{E}((X^*_{(i)} - \mu)^2) - \frac{1}{k^2} \sum_{i=1}^{k} (\mathsf{E}(X^*_{(i)}) - \mu)^2$$

We can proceed like with the expectation and use the "binomial distribution trick", which results in the first term being kσ²

$$\operatorname{Var}(\overline{X}_{\operatorname{RSS}}) = \frac{\sigma^2}{k} - \frac{1}{k^2} \sum_{i=1}^k (\operatorname{E}(X^*_{(i)}) - \mu)^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Comparison of Simple Random Sampling (SRS) and Ranked Set Sampling (RSS) estimators
- ► For SRS, we have $E(\mu_{SRS}) = E(\overline{X}) = \mu$ and $Var(\mu_{SRS}) = \frac{\sigma^2}{k}$
- Thus both SRS and RSS are unbiased estimators
- And the variance

$$\begin{aligned} \mathsf{Var}(\overline{X}_{\mathsf{RSS}}) &= \frac{\sigma^2}{k} - \frac{1}{k^2} \sum_{i=1}^k (\mathsf{E}(X^*_{(i)}) - \mu)^2 \\ &= \mathsf{Var}(\overline{X}) - \frac{1}{k^2} \sum_{i=1}^k (\mathsf{E}(X^*_{(i)}) - \mu)^2 \le \mathsf{Var}(\overline{X}) \end{aligned}$$

since

$$\frac{1}{k^2}\sum_{i=1}^k (\mathsf{E}(X^*_{(i)}) - \mu)^2 \ge 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

So since

$$\mathsf{Var}(\overline{X}_{\mathsf{RSS}}) \leq \mathsf{Var}(\overline{X})$$

- ► In the case of perfect rankings, not only is X_{RSS} an unbiased estimator but its variance is also never larger than the variance of the SRS estimator X based on the same number of measured observations
- In fact, this is a strict inequality unless

$$\mathsf{E}(X^*_{(i)}) = \mu$$

Which is the case only if the rankings are purely random

- The k components of the SRS estimator are mutually independent and identically distributed and each is itself an unbiased estimator
- While the k components of the RSS estimator are also mutually independent, they are not identically distributed and none of them (except for the middle order statistic when k is odd and the underlying distribution is symmetric about µ) are individually unbiased
- ▶ Yet the averaging process leaves $\hat{\mu}_{\text{RSS}}$ unbiased
- ► Interestingly, it is the additional structure associated with the nonidentical nature of the distributions for the terms in µ_{RSS} that leads to the improvement in precision for µ_{RSS} relative to µ_{SRS}

Quinine Content in Cinchona Plants

- Primary source of quinine for use in treatment of malaria
- One source of these plants are in steep hills of southern India
- Indian government wanted to estimate dry bark and quinine content of these plants
- Full measurement requires uprooting plant, stripping the bark, and drying
- Luckily, easy measurements such as volume, height, etc. of plant correlate with quinine yield

Auditing to Detect Fraud

- Assessing the true value of an account can be expansive
- Goal is to check whether sales invoices are fraudulent (over the value that an auditor would assign)
- Instead of auditing all sales invoices, we can use the book value (readily available in the company's electronic ledgers) as the auxiliary ranking variable to select a subset
- Then the audit is done only on this subset of invoices
- To estimate the percentage of fraudulent sales or total amount of fraud

Other Important Issues

- Set size k
- Imperfect rankings
- Unbalanced ranked set sampling

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Cost considerations

References

 Nahhas, Wolfe, and Chen (2002). Ranked Set Sampling: Cost and Optimal Set Size

- Wolfe (2004). Ranked Set Sampling: An Approach to More Efficient Data Collection
- Hollander, Wolfe, and Chicken (2013). Nonparametric Statistical Methods