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Introduction

What we’ve seen so far
I Nonparametric regression using smoothers
I Different types of smoothers: e.g. kernel and local polynomial
I Penalized regression

Today
I Construct basis functions that are

I Multiscale
I Adaptive

I Find sparse set of coefficients for a given basis



Introduction

I In nonparametric regression we estimated the unkonwn
function f directly

I With wavelets we use a orthogonal series representation of f
I This shifts the estimation problem

I from directly estimating f
I to estimating a set of scalar coefficients that represents f

I Similar to penalized regression but regularization will be
replaced by thresholding

I Wavelets are used in the image file format JPEG 2000 to
compress data



Assumptions

I Obervations

Yi = f (xi ) + εi i = 1, . . . , n

I The εi are iid
I The function f is square integrable

∫
f 2 <∞

I Defined on a close interval [a, b]



Basis Function

I A set of functions Ψ = {ψ1, ψ2, . . . } is called a basis for a
class of functions F

I If any function f ∈ F can be represented as a linear
combination of the basis functions ψi

I Written as
f (x) =

∞∑
i=1

θiψi (x)

with θi are scalar constants refered to as coefficients
I The constants θi are inner products of the function f and the

basis functions ψi

θi = 〈f , ψi〉 =
∫

f (x)ψi (x) dx

I The basis is orthogonal if 〈ψi , ψj〉 = 0 for i 6= j
I The basis is orthonormal if orthogonal and 〈ψi , ψj〉 = 1



Basis Function
I Many sets of basis functions
I We consider orthonomal wavelet bases
I A simple wavelet function was first introduced by Haar in 1910

Source: Hollander, Wolfe, and Chicken (2013)
I More flexible and powerful wavelets were developed by

Daubechies in 1992 and many others

Source: Hollander, Wolfe, and Chicken (2013)



Multiresolution Analysis

I We consider wavelet functions ψ

Ψ = {ψjk : j , k integers}

with
ψjk = 2j/2ψ(2jx − k)

that form a basis for square-integrable functions
I Ψ is a collection of translations and dilations of ψ
I The ψ is constructed to ensure the the set Ψ is orthonormal
I The property

∫
ψ2

i = 1 implies that the value of ψ is near 0
except over a small range

I This property combined with the constrution above means that
as j increases ψjk becomes increasingly localized



Multiresolution Analysis

I A careful construction of ψ leads to a multiresolution analysis
I It provides an interpretation of the wavelet representation f in

terms of location and scale by rewritting

f (x) =
∞∑

i=1
θiψi (x)

in terms of translation k and scaling j as (Z is set of integers)

f (x) =
∑
j∈Z

∑
k∈Z

θjkψjk(x)

I This can be intepreted as approximation at different scale j
I Here scale j is the same as frequency
I For a fixed j the index k represents behavior of f at resolution

j and a particular location



Multiresolution Analysis

I Consider the approximation

fJ(x) =
∑
j<J

∑
k∈Z

θjkψjk(x)

I As J increases fJ is able to model smaller scales (higher
frequncy) behavior of f

I Corresponds to changes that occur over smaller interval of the
x -axis

I As J deceases fJ models larger scale (lower frequency) behavior
of f

I Adding gloabl scaling term (think of it as the intercept)

fJ(x) =
∑
k∈Z

ξj0kφj0k(x) +
∑

j0<j<J

∑
k∈Z

θjkψjk(x)



Multiresolution Analysis

I Consider a simple example

f (x) = x , x ∈ [0, 1)

I The Haar wavelet functions are defined as

ψ(x) =
{
1, x ∈ [0, 1/2),
−1, x ∈ [1/2, 1)

I and
φ(x) = 1, x ∈ [0, 1)



Linear Example

Source: Hollander, Wolfe, and Chicken (2013)



Doppler Example

Source: Wasserman (2006)



Discrete Wavelet Transform

I The simple linear function example has exact solution to
determine coefficients

I Usually this is not the case and numerical approximations are
necessary to estimate coefficients

I One numerical methods is called the cascade algorithm by
Mallat 1989

I It works if the sample size is a power of 2

n = 2J

for some positive integer J
I Using this algorithm restricts the upper level of summation to

J − 1 with
J = log2(n)



Sparsity

I Wavelet methods are closely related to the concept of sparity
I A function

f (x) =
∑

j
θjψj(x)

is sparse in a basis ψ1, ψ2, . . . if most of the θj are zero (or
close it zero)

I Sparsity is not captured well by the L2 norm but it is capture
by the L1 norm



Sparsity

I For example,

a = (1, 0, . . . , 0) b = (1/
√

n, . . . , 1/
√

n)

I then both have the same L2 norm

‖a‖2 =
√
1 + 0 + · · ·+ 0 = 1

‖b‖2 =
√
1/n + · · ·+ 1/n =

√
n × 1/n = 1

I but with L1 norm

‖a‖1 = 1 + 0 + · · ·+ 0 = 1
‖b‖1 = 1/

√
n + · · ·+ 1/

√
n = n × 1/

√
n =
√

n



Wavelet Thresholding

I Monthly sunspot numbers from 1749 to 1983
I Collected at Swiss Federal Observatory, Zurich until 1960, then

Tokyo Astronomical Observatory
I Sunspots are temporary phenomena on the photosphere of the

sun that appear visibly as dark spots compared to surrounding
regions

I They correspond to concentrations of magnetic field flux that
inhibit convection and result in reduced surface temperature
compared to the surrounding photosphere



Wavelet Thresholding

I The original data has length 2820, but only the first 2048 are
used here to make it a dyadic number

I So the modified data is now from January 1749 to July 1919
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Wavelet Thresholding
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Wavelet Thresholding

I The drawback of manual thresholding is the subjective choice
of the threshold

I One might mistakenly chose to threshold all but few
coefficients and oversmooth f

I Other methods are based on theoretical or data-driven
considerations

I Many such methods are based on the assumption that the
erros are normally distributed

I For instance: Donoho and Johnstone (1994). Ideal spatial
adaptation via wavelet shrinkage



Wavelet Thresholding
I Hard thresholding (wavelet coefficient θ, threshold λ)

ηH(θ, λ) = θ · I(|θ| > λ)
I Soft thresholding

ηS(θ, λ) = sgn(θ)(|θ| − λ)+ =


θ + λ θ < −λ
0 −λ ≤ θ ≤ λ
θ − λ θ > λ

Source: Wasserman (2006)



Wavelet Thresholding

I The discrete wavelet transform operation may be represented in
matrix form

θ̃ = Wy = Wf + W ε

I Writing the unobserved coefficients as θ = Wf and the error
coefficients as ε̃ = W ε, we have

θ̃ = θ + ε̃

I The matrix W is orthogonal by design, so the ε̃ are still
normally distributed (under the normal error assumption)

I Unless the noise is excessive, the ε̃ are generally smaller in
magnitude than θ

I Which means that under the sparsity property, error coefficients
may be ignored



Wavelet Thresholding

I Donoho and Johnstone make use of this and define soft
thresholding rule to θ̃ using the threshold

λv =
√
2σ2 log(n)

with σ2 being the variance of the errors ε
I The variance is usually not known and needs to be estimated
I They propose the “VisuShrink” algorithm using thresholding ηS

θ̂ = ηS(θ̃, λv )

I and the inverse discrete wavelet tranform W−1

f̂v = W−1θ̂



Wavelet Thresholding

I In general, thresholding procedure:
I decompose the data via discrete wavelet transform
I apply some method of thresholding
I reconstruct using the inverse wavelet tranform on the

thresholded coefficients

f̂ = W −1η(Wy , λ)

I The threshold rule can be hard or soft threshold without
affecting the asymptotic mean squared error

E
(
1
n

n∑
i=1

((f (xi )− f̂v (xi ))2
)



Wavelet Thresholding
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Other Important Topics

I Different thresholding per level (Donhoho and Johnstone 1995)
called “SureShrink”

I Thresholding without strong distributional assumptions on the
errors using cross-validation (Nason 1996)

I Practical, simultaneous confidence bands for wavelet estimators
are not available (Wasserman 2006)

I Standard wavelet basis functions are not invariant to
translation and rotations

I Recent work by Mallat (2012) and Bruna & Mallat (2013)
extend wavelets to handle these kind of invariances

I This provides a promising new direction for the theory of
convolutional neural network
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