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Overview

I We consider very large graphs (number of nodes n→∞)
I Modeling graphs using functions (graph limits)
I Statistical estimation of graph limits, also called graphons
I Approximation with stochastic blockmodels



Random Graphs

I Simplest random graph model Erdős and Rèni:
I Given a positive integer n and a real number 0 ≤ p ≤ 1
I Generate a random graph by taking node pairs (independent)
I Connecting them with probability p

I Random graph models on a fixed set of nodes fail to reproduce
important properties of real-life networks

I Degree of a node: number of incoming and outgoing edges
I For example, the degrees of Erdős and Réni random graphs

follow a binomial distribution, and so they are asymptotically
normal if the edge probability p is a constant

I The degrees are highly concentrated around the mean, while
the degrees of real life networks tend to obey the “Zipf
phenomenon”, which means that the tail of the distribution
decreases according to a power law



Random Graphs

I To address this, new random graph models have been created
by adding not just new edges but also nodes as the graph grows

I These graphs reproduce the “heavy tail” behavior of the degree
sequences of real-life graphs

I This leads us to the idea of graph limits: by making graphs
grow we reach a limit

I This limit can be described by an well defined limit object: the
graphon



Graphs in Pictures

I Petersen graph

Source: Lovasz (2012)



Graphs in Pictures

I Half graph

Source: Lovasz (2012)



Graphs in Pictures

I Random graph
I Random graph limit
I Chessboard
I Rearranged chessboard

Source: Lovasz (2012)



Graphs in Pictures

I Half graph limit

Source: Lovasz (2012)



Graphs in Pictures

I Starting with a single node (top left)
I Create a new node
I Connect every pair of nonadjacent nodes with probability 1/n,

where n is the current number of nodes

Source: Lovasz (2012)



Graphs in Pictures

Source: Caron (2015). Link

http://www.stats.ox.ac.uk/~caron/slides/Caron_sparsenetworks.pdf


Generative Model

I A graph limit or graphon is a measurable function f from
[0, 1]2 into [0, 1] that satisfies f (x , y) = f (y , x) for all x and y

I The ordering of a given graphon f (x , y) along the x and y axes
has no inherent meaning

I f (x , y) has a built-in invariance to “rearrangements” of the x
and y axes

I This is similar to statistical shape analysis, where we seek to
describe objects in a manner that is invariant to their
orientation in Euclidean space

I Thus f (x , y) represents an equivalence class of all symmetric
functions that can be obtained from one another through
measure-preserving transformations of [0, 1]



Generative Model

I We can use graphons to generate random graphs
I Consider U1, . . . ,Un iid uniform random variables between 0

and 1
I Putting an edge between vertices i and j with probability

f (Ui ,Uj)
I Do this independently for all 1 ≤ i < j ≤ n



Statistical Estimation

I Given such a model, the statistical question that we can ask is
I Is it possible to estimate the graphon from a single realization

of the graph?
I In other words, is it possible to estimate the numbers

f (Ui ,Uj), 1 ≤ i < j ≤ n

I Written as matrix M with (i , j)th elements that are given by
f (Ui ,Uj)



Statistical Estimation

I Use the matrix estimation by Universal Singular Value
Thresholding (USVT) by Chaterjee

1. Subtract (a + b)/2 from each entry of X and divide by
(b − a)/2 to make entries lie [−1, 1]

2. For each yi ,j (collection of (yi ,j) is matrix Y)

yij =
{

xij if xij is observed
0 if xij is unobserved

3. Singular value decomposition of Y

Y =
m∑

i=1
siuivT

i

4. Define p̂ as proportion of observed values of X



Statistical Estimation

5. Choose small positive number η ∈ (0, 1) and let S be the set of
“threshold singular values” define as

S := {i : si ≥ (2 + η)
√

np̂}

with η is a predefined, 0.01 seems to work
6. Define

W := 1
p̂

∑
i∈S

siuivT
i

7. Define

m̂ij =


wij −1 ≤ wij ≤ 1
1 wij > 1
−1 wij < −1

8. Map entries back from [−1, 1] to [0, 1]



Alternatives to the USVT Estimator

I The USVT estimator estimates graphon at observed pairs
I Or in other words, the estimator is conditioned on the observed

pairs
I USVT tries to find a low-rank approximation of the probability

matrix M
I The USVT estimator is a consistent estimator (as the number

of nodes goes to infinity) of the probability matrix M
(Chatterjee 2012)

I An alternative estimator is the the histogram estimator
proposed by Chan and Airoldi (2014)



Histogram Estimator

I Chan and Airoldi recently introduced the
sorting-and-smoothing algorithm

Source: Chan and Airoldi (2014)

1. Sorting: Rearrange graph so that the empirical degrees are
monotonically increasing

2. Smoothing: Fit a piecewise constant function



Histogram Estimator (Example)

Source: Chan and Airoldi (2014)
I Collaboration network of arXiv astro physics (ca-AstroPh)
I Symmetric binary graph consisting of 1.8× 104 nodes and

3.9× 105 edges
I The graphon indicates close collaborations among a group of

people concentrated around the top left corner of the graphon
I It also shows a number of small communities along the diagonal



Histogram Estimator (Example)

Source: Chan and Airoldi (2014)
I Who-trust-whom online social network of a general consumer

review site Epinions.com
I Members of the site can decide whether to “trust” each other
I Unsymmetrical binary graph consisting of 7.5× 104 nodes and

5.1× 105 edges
I The graphon indicates that there are some influential nodes

which consistently interact among themselves
I These can be seen from the repeated patterns of the graphon



Other Important Topics

I The regularity lemma says:
Regularity Lemma: The nodes of every graph can be
partitioned into a “small” number of “almost equal” parts in
such a way that for “almost all” pairs of partition classes, the
bipartite graph between them is “quasirandom”.

Source: Lovasz (2012)



Other Important Topics

I In other words, every graphon can be approximated by a
stochastic blockmodel

I The stochastic blockmodels (with blocks q = 1, . . . ,Q)
I The generative model for binary graphs:
I Draw edge strength from multinomial distribution

Zi ∼ Multi(1, α = (α1, . . . , αQ))

such that Ziq = 1 if node i belongs to block q
I Draw edges from Bernoulli distribution

Xij |{ZiqZjl = 1} ∼ Bern(πql)

with π being a Q × Q matrix of connection probabilities
I According to this model, the latent variables Z1, . . . ,ZN are iid
I Given this latent structure, all the edges are independent



Example: arXiv Citation Network

Source: Gopalan and Blei (2013). Efficient Discovery of
Overlapping Communities in Massive Networks
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