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Introduction

I Exploratory data analysis is usually not parametric
I For instance, in Principle Component Analysis (PCA), we do

not assume any parametric model (the data doesn’t need to be
normally distributed)

I What is described by PCA is a decomposition of the data into
Principle Components (PCs) along which the variance is
maximized after projecting the data

I But, as we have seen in this course, it is in general not
necessary to assume a parametric model for inference



Introduction

I We successfully used ranks that allowed to remove the
normality assumptions in one and two-sample tests

I We successfully used the bootstrap to sample from the
empirical distribution and construct confidence intervals

I We successfully used permutation tests for hypothesis testing
I In all these examples we have found ways to make inference
I Is this possible for data visualization?
I That’s the topic for today



Magical Thinking

I Professional statisticians and other scientists with statistical
training were ask “How associated the two variables were”

Source: Diaconis (1983)
I Most of the subjects judged left plot as more associated than

right plot (the same data points)
I Rescaling can shift the perceived association by 10 to 15%



Inference for Plots: The Lineup

Source: Buja et al. (2009)



Inference for Plots: The Lineup

I Generate 19 null plots
I Arrange all 19 plots and insert the real data at random location
I Ask human viewer to single out the real plot
I Under the null hypothesis that all plots are the same, there is a

one in 20 chance to single out the real one
I If the viewer chooses the plot of the real data, then the

discovery can be assigned a p-value of 1/20 = 0.05
I Larger number of null plots could yield a smaller p-value
I But there is a limit of how many plots a human can consider



Inference for Plots: The Lineup

I This protocol can be repeated with multiple independently
recruited viewers

I Consider K viewers and k ≤ K selected the plot of the real
data

I Then the combined p-value is probability P(X ≥ k) following a
binomial distribution with K trials and success probability 1/20

I Can be as small as 0.05K if all viewers picked the plot of the
real data



Inference for Plots: The Lineup (Example)

I Example comes from Boyer & Savageau (1984) where cities
across the USA were rated in 1984

I Question: Is ‘Climate-Terrain’ associated to ‘Housing’?
I Low values on ‘Climate-Terrain’ imply uncomfortable

temperatures (either hot or cold)
I High values of ‘Housing’ indicate a higher cost of owning a

single family residence



Inference for Plots: The Lineup (Example)

I The null hypothesis for this example is
H0: Housing is independent of Climate-Terrain

I The null plots are generated by permuting the values of the
variable Housing

I Pick out the plot of the real data: Is any plot different from
the others?

I Plots on next slide are taken from Buja et al. (2009)







I In class experiment

# number of students
K = 8
# number of correct picks
k = 2
pvalue = sum(dbinom(k:K,K,1/20)); pvalue

## [1] 0.05724465



Inference for Plots: The Lineup (Example)

I HSBC (The Hongkong and Shanghai Banking Corporation)
daily stock returns

I two panels, the first showing the 2005 data only,
I the second the more extensive 1998–2005 data

I In each panel, select which plot is the most different
I Plots on next slide are taken from Buja et al. (2009)







I In class experiment

# number of students
K = 8
# number of correct picks
k = 4
pvalue = sum(dbinom(k:K,K,1/8)); pvalue

## [1] 0.01124781



Inference for Plots: The Lineup (Example)

I For 2005, the viewer should have had difficulty selecting the
real data

I This is a year of low and stable volatility

I For 1998–2005, it should be easy
I features two volatility bursts
I one in 1998 due to the Russian bond default and the LTCM

collapse
I the other in 2001 due to the 9/11 event
I after, volatility stabilizes at a low level



Principal Component Analysis

I Principal Component Analysis (PCA) is a data exploration tool
I PCA finds a low-dimensional subspace that minimizes the

distances between projections points and subspace
I Consider observations x1, x2, . . . , xn
I Center and combine them in matrix X of dimension p × n
I PCA solves this minimization problem with 〈v1, v1〉 = 1

v̂1 = maximize
v1

{
Var(Xv1)

}
I And for v2 with 〈v1, v2〉 = 0 and 〈v2, v2〉 = 1

v̂2 = maximize
v2

{
Var(Xv2)

}
I Keep going the same way until v̂1, . . . , v̂q have been collected

and put them in V̂q of dimensions p × q



Principal Component Analysis (Example)
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Principal Component Analysis (Example)
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Source: S., Pennec, and Reyes 2012



Principal Component Analysis (Example)

Two animations of mandible “eigenanatomy”:
I http://christofseiler.github.io/phd/

http://christofseiler.github.io/phd/


Bootstrap PCA

I Two ways to bootstrap PCA in case of random rows X
I Partial bootstrap and total bootstrap
I Partial bootstrap:

I Project B replications onto initial subspace
I Initial subspace is obtained by PCA on original X
I Underestimates variation of parameters (Milan 1995)

I Total bootstrap:
I Perform new PCA on each replication
I Problem: Need to align PCA’s
I Nuisance variations: reflections and rotations



Bootstrap PCA

I For the total bootstrap, need to align PCA’s
I This is usually done using Procrustes analysis
I Procrustes refers to a bandit from Greek mythology who made

his victims fit his bed by stretching their limbs (or cutting them
off)

I Procrustes analysis is used in statistical shape analysis to
compare aligned shapes after removing “nuisance” parameters:

I translation in space
I rotation in space
I sometimes scaling of the objects



Bootstrap PCA

I Shape example: landmarks for the human spine



Bootstrap PCA

I Same idea can be applied to align projected observations
I In PCA, shapes are the projected observations onto the lower

dimensional subspace spanned by say PC1 and PC2

Source: Josse, Wager, and Husson (2014)



Bootstrap PCA

I Collecting B bootstrap sampled PCA’s by resampling rows of
data matrix X

V̂ ∗1
q , . . . , V̂ ∗B

q

I Align all the projected point set using Procrustes alignment
I Meaning, we find rotation (RT R = I)

R̂b = minimize
R

=
{
‖X ∗1V̂ ∗1

q − X ∗bV̂ ∗b
q R‖2

}
I and apply rotation to projected data points

X ∗bV̂ ∗b
q R̂∗b

I Overlay points and draw contours around it



Parametric Bootstrap PCA

I In case of fixed rows and columns X , we can use parametric
bootstrap

I It is good alternative when the model is too difficult or before
the asymptotics regime

I Steps:

1. Perform PCA on X to estimate V̂p
2. Estimate error σ2 from residual matrix εn×p = X − V̂qV̂ T

q X
(assume elementwise iid normal noise)

3. Bootstrap 1, . . . ,B:
I Draw ε∗b

ij from N(0, σ̂2)
I Generate new matrix X∗b = V̂qV̂ T

q X + ε∗b

I Perform PCA on X∗b



Parametric Bootstrap PCA (Example)

I Consumers describe 10 white wines with 15 sensory attributes
I Consumers score wines between 1 and 10 for each attribute
I Collect averages across consumers in 10× 15 matrix X

Source: Josse et al.



Parametric Bootstrap PCA (Example)

I With boostraped confidence ellipses

Source: Josse et al.
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