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Overview

I So far, we have seen only univariate nonparametric tests
I Today, we’ll cover multivariate generalizations
I Two-sample tests

I Data depth-based: Tukey depth function
I Graph-based: Friedman and Rafsky test



Data Depth-Based Two-Sample Tests

I In univariate nonparametric analysis, we relied heavily on ranks
I Ranks are straightforward in the univariate case
I We just use the natural ordering of observations along the real

line
I Moving from univariate to multivariate setting, we need to

make some more considerations
I In Rd there is no natural ordering
I Just a straightforward extension of the median to define a

center can fail
I A Rd coordinate-wise median can lie outside the convex hull of

the data



Data Depth-Based Two-Sample Tests

I The usual ranks:
I We ranked n observations in ascending order
I From that we constructed test statistics
I For instance, the median is defined as the order statistics of

rank (n + 1)/2 (when n is odd)
I The median can be computed in O(n) time
I The problem is that generalizing this to higher dimension is

straightforward

I So we consider a different ranking system
I We rank observations as assigning

I the most extreme observation depth 1
I the second smallest and second largest observations depth 2
I Until we end up with the deepest observation, the median

I This can be extended to higher dimensions more easily



Data Depth-Based Two-Sample Tests

I Tukey propsed the depth function to address this issue
I Take a distribution F on Rd

I A depth function D(x ,F )
I Then, the Half space depth function proposed by Tukey, for

x ∈ R2 is:

DH(x ,F ) = inf{F (H) : x ∈ H closed halfspace}



Data Depth-Based Two-Sample Tests

I Example: Uniform distribution on the unit square in R2

Source: Serfling (2011). (Slides)
I In contrast, density function is constant with no contours of

equal density

http://www.utdallas.edu/~serfling/Serfling_Oberwolfach_Talk.pdf


Data Depth-Based Two-Sample Tests
I The sample halfspace depth of θ is the minimum fraction of

data points in any closed halfspace containing θ

DH(θ,X1, . . . ,Xn) = minimize
‖u‖=1

n∑
i=1

I(uT Xi ≥ uT θ)

Source: Rousseeuw and Struyf (1998)



Data Depth-Based Two-Sample Tests
I The sample halfspace depth of x is the minimum fraction of

data points in any closed halfspace containing θ

DH(θ,X1, . . . ,Xn) = minimize
‖u‖=1

n∑
i=1

I(uT Xi ≥ uT θ)

Source: Rousseeuw and Hubert (2015)



Data Depth-Based Two-Sample Tests

I Let X1, . . . ,Xn1 ∼ F and Y1, . . . ,Yn2 ∼ G
I Null hypothesis H0 : F = G
I Alternative: different location shift and/or a scale
I Liu and Singh (1993) test statistic :

Q =
n2∑

j=1

n1∑
i=1

I(D(Xi , {X1, . . . ,Xn1}) ≤ D(Yj , {X1, . . . ,Xn1}))

I The statistic Q gauges the overall “outlyingness” of the G
population with respect to the given F population

I It can detect whether G has a different location and/or has
additional dispersion as compared to F



Data Depth-Based Two-Sample Tests

I Special case: Depth function for the univariate Mann-Whitney
test

T =
n2∑

j=1

n1∑
i=1

I(Xi < Yj)

by taking
D(x ,F ) = F (x)

I Zuo and He (2006) proved asymptotic normality of this statistic



Data Depth-Based Two-Sample Tests
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I The star is the Tukey median
I Bag: The dark area contains 50%
I Fence: Inflating the “bag” by factor 3 relative to Tukey median
I Loop: Convex hull containing all points inside the fence



Data Depth-Based Two-Sample Tests

I Gets increasingly difficult to compute in high dimensions
I Computation time is polynomial in n but exponential in d
I Rousseeuw and Struyf (1998) proposed an approximation
I They compute m random directions out of all

(n
d
)
directions

perpendicular to hyperplanes through d data points



Data Depth-Based Two-Sample Tests

I Set current depth to n
I Repeat m times:

I Draw a random sample of size d
I Determine a direction u perpendicular to the d-subset
I Project all data points on the line L through θ with direction u
I Compute the univariate depth k of θ on L
I Set depth to min(current depth, k)

I This algorithm has time complexity O(md3 + mdn)



Graph-Based Two-Sample Tests

I Alternative multivariate nonparametric tests are based on
graphs

I We consider one test based on minimal spanning trees
I A set of n points in Rd can be computed in O(dn2) time



Graph-Based Two-Sample Tests

I The Wald-Wolfowitz runs test can be used to evaluate
sequences of runs

I For instance to test whether the following sequence is random
HHHTTTHHHTHHHTTTT

I This sequence of coin tosses has 6 runs
HHH TTT HHH T HHH TTTT

I The test statistics is the total number of runs
I Reject H0 for small and large number of runs
I This has been used to study the hot hand in basketball



Graph-Based Two-Sample Tests

I For univariate continuous observations:
I Pool the observations
I Rank the observations
I Count the number of runs

I Run: sequences of observations that are from the same sample
and follow each other

I Test statistics is the total number of runs



Graph-Based Two-Sample Tests

I The Friedman and Rafsky test is a generalization of
Wald-Wolfowitz runs test to higher dimensions

I The difficulty is that we need to sort observations
I Friedman and Rafsky purpose to use minimal spanning trees as

a multivariate generalization of the univariate sorted list
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Graph-Based Two-Sample Tests

I For univariate sample, the edges of the MST are defined by
adjacent observations in the sorted list

I The Wald-Wolfowitz runs test can be described in this
alternative way:
1. Construct minimal spanning trees of pooled univariate

observations
2. Remove all edges for which the defining nodes originate from

different samples
3. Define the test statistics as the number of disjoint subtrees that

result

I For multivariate samples, just construct minimal spanning tree
in step 1 from multivariate observations



Graph-Based Two-Sample Tests

Source: Friedman and Rafsky (1979)



Graph-Based Two-Sample Tests

I Reject H0 for small and large number of subtrees (runs)
I The null distribution of the test statistics can be computed

using permutation tests
I fix tree
I permute labels

I Good power in finite samples for multivariate data (against
general alternatives: location, spread, and shape)



Graph-Based Two-Sample Tests

I Has been applied to mapping cell populations in flow cytometry
data (Hsiao et al. 2016)

I two cell populations
I d measurements on each cell
I determine whether the expression of a cellular marker is

statistically different
I suggesting candidates for new cellular phenotypes
I indicate splitting or merging of cell populations

I Recent development for very high-dimensional data sets (Chen
and Friedman 2015)
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