Bootstrap (Part 3)

Christof Seiler

Stanford University, Spring 2016, Stats 205
So far we used three different bootstraps:

- Nonparametric bootstrap on the rows (e.g. regression, PCA with random rows and columns)
- Nonparametric bootstrap on the residuals (e.g. regression)
- Parametric bootstrap (e.g. PCA with fixed rows and columns)

Today, we will look at some tricks to improve the bootstrap for confidence intervals:

- Studentized bootstrap
Introduction

- A statistics is (asymptotically) pivotal if its limiting distribution does not depend on unknown quantities.
- For example, with observations X_1, \ldots, X_n from a normal distribution with unknown mean and variance, a pivotal quantity is

$$T(X_1, \ldots, X_n) = \sqrt{n} \left(\frac{\theta - \hat{\theta}}{\hat{\sigma}} \right)$$

with unbiased estimates for sample mean and variance

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{\theta})^2$$

- Then $T(X_1, \ldots, X_n)$ is a pivot following the Student’s t-distribution with $\nu = n - 1$ degrees of freedom.
- Because the distribution of $T(X_1, \ldots, X_n)$ does not depend on μ or σ^2.
Introduction

- The bootstrap is better at estimating the distribution of a pivotal statistics than at a nonpivotal statistics
- We will see an asymptotic argument using Edgeworth expansions
- But first, let us look at an example
Motivation

- Take \(n = 20 \) random exponential variables with mean 3

\[x = \text{rexp}(n, \text{rate}=1/3) \]

- Generate \(B = 1000 \) bootstrap samples of \(x \), and calculate the mean for each bootstrap sample

\[s = \text{numeric}(B) \]
\[\text{for } (j \text{ in } 1:B) \{ \text{ boot } = \text{sample}(n, \text{replace=TRUE}) \]
\[s[j] = \text{mean}(x[\text{boot}]) \} \]

- Form confidence interval from bootstrap samples using quantiles (\(\alpha = .025 \))

\[\text{simple.ci } = \text{quantile}(s, c(.025,.975)) \]

- Repeat this process 100 times
- Check how often the intervals actually contain the true mean
Motivation

bootstrap conf intervals
Motivation

- Another way is to calculate a pivotal quantity as the bootstrapped statistic
- Calculate the mean and standard deviation

\[x = \text{rexp}(n, \text{rate}=1/3) \]
\[\text{mean}.x = \text{mean}(x) \]
\[\text{sd}.x = \text{sd}(x) \]

- For each bootstrap sample, calculate

\[z = \text{numeric}(B) \]
\[
\text{for (j in 1:B) { }
\text{boot} = \text{sample}(n, \text{replace=TRUE})
\text{z}[j] = (\text{mean}.x - \text{mean}(x[\text{boot}]))/\text{sd}(x[\text{boot}]) \}
\]

- Form a confidence interval like this

\[\text{pivot.ci} = \text{mean}.x + \text{sd}.x*\text{quantile}(z, c(.025, .975)) \]
Motivation

bootstrap conf intervals
Studentized Bootstrap

- Consider X_1, \ldots, X_n from F
- Let $\hat{\theta}$ be an estimate of some θ
- Let $\hat{\sigma}^2$ be a standard error for $\hat{\theta}$ estimated using the bootstrap
- Most of the time as n grows
 \[
 \frac{\hat{\theta} - \theta}{\hat{\sigma}} \sim N(0, 1)
 \]
- Let $z^{(\alpha)}$ be the $100 \cdot \alpha$th percentile of $N(0, 1)$
- Then a standard confidence interval with coverage probability $1 - 2\alpha$ is
 \[
 \hat{\theta} \pm z^{(1-\alpha)} \cdot \hat{\sigma}
 \]
- As $n \to \infty$, the bootstrap and standard intervals converge
How can we improve the standard confidence interval?

These intervals are valid under assumption that

\[Z = \frac{\hat{\theta} - \theta}{\hat{\sigma}} \sim N(0, 1) \]

But this is only valid as \(n \to \infty \)

And are approximate for finite \(n \)

When \(\hat{\theta} \) is the sample mean, a better approximation is

\[Z = \frac{\hat{\theta} - \theta}{\hat{\sigma}} \sim t_{n-1} \]

and \(t_{n-1} \) is the Student’s \(t \) distribution with \(n - 1 \) degrees of freedom
Studentized Bootstrap

- With this new approximation, we have

\[\hat{\theta} \pm t_{n-1}^{(1-\alpha)} \cdot \hat{\sigma} \]

- As \(n \) grows the \(t \) distribution converges to the normal distribution
- Intuitively, it widens the interval to account for unknown standard error
- But, for instance, it does not account for skewness in the underlying population
- This can happen when \(\hat{\theta} \) is not the sample mean
- The Studentized bootstrap can adjust for such errors
Studentized Bootstrap

- We estimate the distribution of
 \[Z = \frac{\hat{\theta} - \theta}{\hat{\sigma}} \sim ? \]

- by generating \(B \) bootstrap samples \(X^*1, X^*2, \ldots, X^*B \)

- and computing
 \[Z^*b = \frac{\hat{\theta}^*b - \hat{\theta}}{\hat{\sigma}^*b} \]

- Then the \(\alpha \)th percentile of \(Z^*b \) is estimated by the value \(\hat{t}(\alpha) \) such that
 \[\frac{\#\{ Z^*b \leq \hat{t}(\alpha) \}}{B} = \alpha \]

- Which yields the studentized bootstrap interval
 \((\hat{\theta} - \hat{t}(1-\alpha) \cdot \hat{\sigma}, \hat{\theta} - \hat{t}(\alpha) \cdot \hat{\sigma}) \)
Asymptotic Argument in Favor of Pivoting

- Consider parameter θ estimated by $\hat{\theta}$ with variance $\frac{1}{n}\sigma^2$
- Take the pivotal statistics

$$S = \sqrt{n} \left(\frac{\hat{\theta} - \theta}{\hat{\sigma}} \right)$$

with estimate $\hat{\theta}$ and asymptotic variance estimate $\hat{\sigma}^2$
- Then, we can use Edgeworth expansions

$$P(S \leq x) = \Phi(X) + \sqrt{n}q(x)\phi(x) + O(\sqrt{n})$$

with

- Φ standard normal distribution,
- ϕ standard normal density, and
- q even polynomials of degree 2
Asymptotic Argument in Favor of Pivoting

- Bootstrap estimates are

\[S = \sqrt{n} \left(\frac{\hat{\theta}^* - \hat{\theta}_{\hat{\sigma}^*}}{\hat{\sigma}^*} \right) \]

- Then, we can use Edgeworth expansions

\[P(S^* \leq x | X_1, \ldots, X_n) = \Phi(X) + \sqrt{n} \hat{q}(x) \phi(x) + O(\sqrt{n}) \]

- \(\hat{q} \) is obtained by replacing unknowns in \(q \) with bootstrap estimates

- Asymptotically, we further have

\[\hat{q} - q = O(\sqrt{n}) \]
Asymptotic Argument in Favor of Pivoting

- Then, the bootstrap approximation to the distribution of S is

\[
P(S \leq x) - P(S^* \leq x|X_1, \ldots, X_n) = \]
\[
\left(\Phi(X) + \sqrt{n}q(x)\phi(x) + O(\sqrt{n}) \right) - \left(\Phi(X) + \sqrt{n}\hat{q}(x)\phi(x) + O(\sqrt{n}) \right)
\]
\[
= O\left(\frac{1}{n}\right)
\]

- Compared to the normal approximation \sqrt{n}

- Which the same as the error when using standard bootstrap (can be shown with the same argument)
Studentized Bootstrap

- These pivotal intervals are more accurate in large samples than that of standard intervals and t intervals.
- Accuracy comes at the cost of generality.
 - Standard normal tables apply to all samples and all samples sizes.
 - t tables apply to all samples of fixed n.
 - Studentized bootstrap tables apply only to given sample.
- The studentized bootstrap can be asymmetric.
- It can be used for simple statistics, like mean, median, trimmed mean, and sample percentile.
- But for more general statistics like the correlation coefficients, there are some problems:
 - Interval can fall outside of allowable range.
 - Computational issues if both parameter and standard error have to be bootstrapped.
The Studentized bootstrap works better for variance stabilized parameters.

Consider a random variable X with mean θ and standard deviation $s(\theta)$ that varies as a function of θ.

Using the delta method and solving an ordinary differential equation, we can show that

$$g(x) = \int_{x}^{\infty} \frac{1}{s(u)} du$$

will make the variance of $g(X)$ constant.

Usually $s(u)$ is unknown.

So we need to estimate $s(u) = se(\hat{\theta}|\theta = u)$ using the bootstrap.
Studentized Bootstrap

1. First bootstrap \(\hat{\theta} \), second bootstrap \(\hat{\theta} \) from \(\hat{\theta}^* \)
2. Fit curve through points \((\hat{\theta}^*1, \hat{\theta}(\hat{\theta}^*1)), \ldots, (\hat{\theta}^*B, \hat{\theta}(\hat{\theta}^*B))\)
3. Variance stabilization \(g(\hat{\theta}) \) by numerical integration
4. Studentized bootstrap using \(g(\hat{\theta}^*) - g(\hat{\theta}) \)
 (no denominator, since variance is now approximately one)
5. Map back through transformation \(g^{-1} \)

Source: Efron and Tibshirani (1994)
library(boot)
mean.fun = function(d, i) {
 m = mean(d$hours[i])
 n = length(i)
 v = (n-1)*var(d$hours[i])/n^2
 c(m, v) }
air.boot <- boot(aircondit, mean.fun, R = 999)
results = boot.ci(air.boot, type = c("basic", "stud"))
Studentized Bootstrap in R

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
##
CALL :
boot.ci(boot.out = air.boot, type = c("basic", "stud"))
##
Intervals :
Level Basic Studentized
95% (22.2, 171.2) (49.0, 303.0)
##
Calculations and Intervals on Original Scale
References

- Hall (1992). The Bootstrap and Edgeworth Expansion
- Efron and Tibshirani (1994). An Introduction to the Bootstrap
- Love (2010). Bootstrap-t Confidence Intervals (Link to blog entry)