Bootstrap (Part 4)

Christof Seiler

Stanford University, Spring 2016, Stats 205
Overview

- **So far:**
 - Nonparametric bootstrap on the rows (e.g. regression, PCA with random rows and columns)
 - Nonparametric bootstrap on the residuals (e.g. regression)
 - Parametric bootstrap (e.g. PCA with fixed rows and columns)
 - Studentized bootstrap

- **Today:**
 - Bias-Corrected-accelerated (BCa) bootstrap
 - From BCa to ABC
Motivation

- Correlation coefficient of bivariate normal with $\rho = 0.577$

```r
sigma = matrix(nrow = 2, ncol = 2)
diag(sigma) = 1
rho = 0.577
sigma[1,2] = sigma[2,1] = rho
sigma
```

```
  [,1] [,2]
[1,] 1.000 0.577
[2,] 0.577 1.000
```

- Distribution of sample correlation coefficient ($n = 10$)
- Compare: Percentile, Studentized, and Bias-Corrected-Accelerated (BCa) bootstrap
bias = rho - \texttt{mean}(\text{corhat}); \text{ bias}

[1] 0.0217078
Motivation

Percentile Bootstrap
Motivation

- Studentized bootstrap with variance stabilization fails due to numerical problems
Motivation

Studentized Bootstrap Without Variance Stabilization
Motivation

Percentile Bootstrap

Studentized Bootstrap Without Variance Stabilization

BCa Bootstrap
BCa Bootstrap

- The bias-corrected bootstrap is similar to the percentile bootstrap.
- Recall the percentile bootstrap:
 - Take bootstrap samples
 \[
 \hat{\theta}^*, \ldots, \hat{\theta}^B
 \]
 - Order them
 \[
 \hat{\theta}^{(*1)}, \ldots, \hat{\theta}^{(*B)}
 \]
 - Define interval as
 \[
 (\hat{\theta}^{(*B\alpha)}, \hat{\theta}^{(*B(1-\alpha))})
 \]
 (assuming that \(B\alpha\) and \(B(1 - \alpha)\) are integers)
BCa Bootstrap

- Assume that there is an monotone increasing transformation g such that
 \[\phi = g(\theta) \quad \text{and} \quad \hat{\phi} = g(\hat{\theta}) \]

- The BCa bootstrap is based on this model
 \[\frac{\hat{\phi} - \phi}{\sigma_{\phi}} \sim N(-z_0, 1) \quad \text{with} \quad \sigma_{\phi} = 1 + a_{\phi} \]

- Which is a generalization of the usual normal approximation
 \[\frac{\hat{\theta} - \theta}{\sigma} \sim N(0, 1) \]
BCa Bootstrap

- \hat{z}_0 is the bias estimate
- \hat{z}_0 measures discrepancy between the median of $\hat{\theta}^*$ and $\hat{\theta}$
- It is estimated with

$$\hat{z}_0 = \Phi^{-1} \left(\frac{\#\{\hat{\theta}^{*b} < \hat{\theta}\}}{B} \right)$$

- We obtain $\hat{z}_0 = 0$ if half of the $\hat{\theta}^{*b}$ values are less than or equal to $\hat{\theta}$
BCa Bootstrap

- \(\hat{a} \) is the skewness estimate
- \(\hat{a} \) measures the rate of change of the standard error of \(\hat{\theta} \) with respect to the true parameter \(\theta \)
- It is estimated using the Jackknife
 - Delete \(i \)th observation in original sample denote new sample by \(\hat{\theta}(i) \) and estimate
 \[
 \hat{\theta}(\cdot) = \sum_{i=1}^{n} \frac{\hat{\theta}(i)}{n}
 \]
 - Then
 \[
 \hat{a} = \frac{\sum_{i=1}^{n}(\hat{\theta}(\cdot) - \hat{\theta}(i))^3}{6\left\{\sum_{i=1}^{n}(\hat{\theta}(\cdot) - \hat{\theta}(i))^2\right\}^{3/2}}
 \]
The bias-corrected version makes two additional corrections to the percentile version.

By redefining lower α_1 and upper α_2 levels as

$$\alpha_1 = \Phi \left(\hat{z}_0 + \frac{\hat{z}_0 + z^{(\alpha)}}{1 - \hat{a}(\hat{z}_0 + z^{(\alpha)})} \right)$$

$$\alpha_2 = \Phi \left(\hat{z}_0 + \frac{\hat{z}_0 + z^{(1-\alpha)}}{1 - \hat{a}(\hat{z}_0 + z^{(1-\alpha)})} \right)$$

with $z^{(\alpha)}$ being the 100α percentile of standard normal and Φ normal CDF.

When \hat{a} and \hat{z}_0 are equal to zero then $\alpha_1 = \alpha$ and $\alpha_2 = 1 - \alpha$.

The interval is then given by

$$\left(\hat{\theta}(\star B\alpha_1), \hat{\theta}(\star B\alpha_2) \right)$$

(assuming that $B\alpha_1$ and $B\alpha_2$ are integers)
BCa Bootstrap

- Same asymptotic accuracy as the studentized bootstrap
- Can handle out of range problem as well
- Efron (1987) for detailed justification of this model
BCa Bootstrap in R

```r
library(bootstrap)
xdata = matrix(rnorm(30), ncol=2); n = 15
theta = function(x, xdata) {
  cor(xdata[x,1], xdata[x,2])
}
results = bcanon(1:n, 100, theta, xdata,
  alpha=c(0.025, 0.975))
results$confpoints

## alpha   bca point
## [1,] 0.025 -0.39659
## [2,] 0.975  0.69326
```
Properties of Different Bootstrap Methods

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Percentile</th>
<th>Studentized*</th>
<th>BCa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotic Accuracy</td>
<td>$O(\sqrt{n})$</td>
<td>$O(\sqrt{n})$</td>
<td>$O(1/n)$</td>
<td>$O(1/n)$</td>
</tr>
<tr>
<td>Range-Preserving</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Transformation-Invariant</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Bias-Correcting</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Skeweness-Correcting</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\hat{\sigma}, \hat{\sigma}^*$ required</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Analytic constant or variance stabilizing tranformation required</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* with variance stabilization
Properties of Different Bootstrap Methods

For nonparametric bootstrap:

Are the standard deviations $\hat{\sigma}$, $\hat{\sigma}^*$ available?

Yes

Is there a correlation between $\hat{\sigma}^*$ and $\hat{\theta}^*$?

Yes

Variance stabilised bootstrap-t or BCa

No

Bootstrap-t or BCa

No

BCa

Source: Carpenter and Bithell (2000)
Many More Topics

- Using the bootstrap for better confidence in model selection (Efron 2014)
- Using the jackknife and the infinitesimal jackknife for confidence intervals in random forests prediction or classification (Wager, Hastie, and Efron 2014)
Approximate Bayesian Computation (ABC)

- **Goal:** We wish to sample from the posterior distribution \(p(\theta|D) \) given data \(D \)

\[
p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}
\]

- **Setting:**
 - The likelihood \(p(D|\theta) \) is hard to evaluate or expensive to compute (e.g. missing normalizing constant)
 - Easy to sample from likelihood \(p(D|\theta) \)
 - Easy to sample from prior \(p(\theta) \)

- **Examples:**
 - Population genetics (latent variables)
 - Ecology, epidemiology, systems biology (models based on differential equations)
Approximate Bayesian Computation (ABC)

- **Sampling algorithm (with data \(D = \{y_1, \ldots, y_n\} \)):**
 1. Sample \(\theta_i \sim p(\theta) \)
 2. Sample \(x_i \sim p(x|\theta_i) \)
 3. Reject \(\theta_i \) if \(x_i \neq y_j \) for \(j = 1, \ldots, n \)

- **ABC sampling (define statistics \(\mu \), distance \(\rho \), and tolerance \(\epsilon \)):**
 1. Sample \(\theta_i \sim p(\theta) \)
 2. Sample \(\hat{D}_i = \{x_1, \ldots, x_k\} \sim p(x|\theta_i) \)
 3. Reject \(\theta_i \) if \(\rho(\mu(\hat{D}_i), \mu(D)) > \epsilon \)
1. Compute summary statistic μ from observational data.

2. Given a certain model, perform n simulations, each with a parameter drawn from the prior distribution.

3. Compute summary statistic μ_i for each simulation.

4. Based on a distance $\rho(\cdot, \cdot)$ and a tolerance ϵ, decide for each simulation whether its summary statistic is sufficiently close to that of the observed data.

5. Approximate the posterior distribution of θ from the distribution of parameter values θ, associated with accepted simulations.
References

- Hall (1992). The Bootstrap and Edgeworth Expansion
- Efron and Tibshirani (1994). An Introduction to the Bootstrap
- Marin, Pudlo, Robert, and Ryder (2012). Approximate Bayesian Computational Methods
- Efron (2014). Estimation and Accuracy after Model Selection