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Abstract

Computational anatomy is the science of anatomical shape examined by deform-
ing a template organ into a subject organ. It compares and contrasts organ shapes
to inspire personalized treatments or find group differences in case-control studies.
Independently of the transformation model used, the task of finding deformations
between organs is a statistical task concerned with estimating parameters. Recently
it has become important to go beyond “best” estimates and quantify the variability
of estimates. The variability is caused by noise in the image, model misspecifica-
tion, or sampling variability in an observational study. Bayesian statistics provides
a rigorous framework to build models that can quantify uncertainty. In this book
chapter, we will review some of the basics of Bayesian statistics and related it to
our own experience in applying Bayesian ideas in computational anatomy. We will
divide the presentation into two parts. First, we formulate image registration using
parametric Bayesian statistics and elaborate on some of the practical difficulties
that we encountered in our own work. Second, we will give an example of nonpara-
metric Bayesian statistics applied to clustering of deformation fields into parcels of
contiguous voxels.
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1 Introduction

The goal of this book chapter is to show case two applications of Bayesian statistics we
have successfully employed in our own research. The first application is on quantifying
uncertainty in image registration using a parametric Bayesian model and an efficient
sampling algorithm. The second application is on clustering of deformations into spatially
contiguous regions using Bayesian nonparametrics.

Before introducing our statistical work, we would like to define what we understand by
computational anatomy. The aim of computational anatomy is to describe the anatomy
not by what it looks like but by how it deforms. Finding such deformations is usu-
ally referred to as image registration; throughout this text we will use computational
anatomy and image registration interchangeably. Statistical estimation and analysis of
deformations of a group of medical images can for instance be used for early diagnosis
and prediction of disease. The emerging field of computational anatomy has many facets.
It lays at the interface between medicine, geometry, computing and statistics. Ideally,
mathematicians define a notion of shape and a deep theory that is rooted in geometry.
The computing community takes these notions and theories and implements them on
a computer. Statisticians then quantify the uncertainty when running these computer
programs on real world data. Finally, medical doctors make treatment decisions based
on the calculated statistics.

Going back in time, we can trace the origins of computational anatomy to Riemann and
his “Habilitationsschrift” in 1854 where he linked manifolds to shape of solid figures.
He conceived the analysis of shapes of a solid figure as an important part of geometry.
In 1917, the biologist-mathematician D’Arcy Thompson wrote an entire chapter on the
analysis of shapes using deformations in his book on “Growth and form” (Thompson,
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1942). His key idea was to study the shapes not by what they look like, but by how they
deform relative to each other. He showed how one could relate various species, different
kinds of fish, monkeys and humans to each other by stretching, scaling, and, by some more
complicated deformations like conformal maps. In 1966, Arnold wrote his groundbreaking
paper on employing modern geometry to describe incompressible fluids (Arnold, 1966).
From the nineties until today, Grenander, Miller, Trouvé, Younes, Holm (Grenander and
Miller, 1998; Trouvé and Younes, 2011; Younes, 2010; Holm et al., 2009), and many
others, modeled the human anatomy using fluid dynamics and build on Arnold’s ideas to
establish the foundations of computational anatomy.

Today, computational anatomy is surrounded by a vibrant community and several work-
shops during the MICCAI conference have been held over the past years on its mathemat-
ical foundations.1 In 2015, an entire research program on the theoretical foundations of
computational anatomy and its applications was organized at the University of Vienna.2

2 Parametric Bayesian Statistics

Image registration is one of the major work horses of medical image analysis. One of the
most important applications of image registration is to “normalize” brains to a common
brain atlas. This is a crucial “preprocessing” step in most multimodal brain studies: For
instance, in structural MRI studies, image registration is used to measure local brain
morphology; or in functional and diffusion MRI studies, image registration is used to
bring all subjects in the same anatomical space for comparison. Other imaging based
communities have extended and adapted registration based method for their own appli-
cation. For instance, orthopeadic research uses image registration to estimate implant
designs and evaluate fracture risk of bones.

Image registration builds on assumptions and approximations. From a statistical view-
point, image registration is the task of estimating the parameters that define non-linear
deformations. In the first part of this book chapter, we review how estimation can be
done using Bayesian statistics.

2.1 Background

Before going into the modeling and computational details of how Bayesian statistics can
be used in image registration, we review the general concepts of Bayesian statistics. We
start with a model

M = {f(y | θ) : θ ∈ Ω}

and refer to function f as the likelihood and the variable θ as parameters. The parameters
can take values in simple one dimensional spaces or high dimensional spaces; they can
be discrete or continuous. This model describes the data as random samples from the
likelihood function given a fixed parameter

Y1, . . . , Yn ∼ f(y | θ).
1http://www-sop.inria.fr/asclepios/events/MFCA13/
2http://www.mat.univie.ac.at/~shape2015/
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A Frequentist would stop here, a Bayesian needs to define a prior distribution on the
parameters

π(θ)

to complete the model. We can think of the prior as a way to incorporate our beliefs from
previous experiments into our analysis. Combining everything using Bayes rule will give
us the posterior distribution of the parameters after having observed data and given our
prior beliefs

π(θ|y) =

∏n
i=1 f(yi|θ)π(θ)

m(y)
.

The denominator m(y) is called the marginal distribution,

m(y) = m(y1, . . . , yn) =

∫
f(y1, . . . , yn|θ)π(θ)dθ =

∫ n∏
i=1

f(yi|θ)π(θ)dθ,

and can be seen as the measurement of how well our model explains the data on average
over all possible parameter values weighted by their prior probability. With the posterior
distribution in hand, we can now compute posterior means

θ̄ = E(θ | y) =

∫
θ π(θ | y) dθ

or 95% credible intervals between

0.025 =

∫ θl

−∞
θ π(θ | y) dθ and 0.975 =

∫ ∞
θh

θ π(θ | y) dθ,

where 95% of the posterior mass is between θl and θh. In most applications, we will not be
able to calculate these integrals analytically but we will have to resort to computational
approximations. Variational inference and Markov Chain Monte Carlo (MCMC) are the
main computational approximations employed in practice. Even when m(y) is unknown,
we can use MCMC to draw samples from the posterior. Once can think of sampling as an
alternative way of describing a distribution. If one were able to sample infinitely many
times from a distribution, one would know everything about the distribution. However,
in practice we will resort to finite sample approximations, and thus we will know the
distribution up to approximation errors.

Sampling from high dimensional probability distributions is a crucial step towards the
Bayesian treatment of computational anatomy. The goal is to setup a statistical model of
computational anatomy, this includes constructing a prior for deformations and linking it
through the likelihood to fixed and moving images. To infer the deformations parameters,
we then sample many times from the posterior distribution that is a combination of the
likelihood and prior distribution. We can then build uncertainty estimates form these
samples. In computational anatomy, we need efficient samplers that work well in high
dimensions. One promising candidate is the Hamiltonian Monte Carlo (HMC) method. It
is a promising candidate for two reasons: it is efficient in high dimensions, and it provides
a geometric structures very similar to the one encountered in computational anatomy.

Due to the computational complexity the focus has been mostly on finding efficient algo-
rithms and implementations to obtain point estimates by optimizing an objective func-
tions and finding its maximum value. However, computational anatomy is clearly a
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Figure 1: The contour plot (most right image) shows credible interval length of the
displacement magnitude in millimeter when deforming the moving image (middle
image) to the fixed image (most left image).

statistical problem considering that images are noisy and registered brains between sub-
jects and template never match perfectly. With recent advances in computational power
and Bayesian computations it has now become possible to add error bars to solutions.
This provides the practitioner with additional information of the uncertainty associated
to registration results. This is crucial in a clinical setting where it is important to obtain
reproducible results.

2.2 Example

We start with an example from an ongoing back pain project. Figure 1 shows the un-
certainty map when registering two participants in our back pain dataset. On the left,
the posterior mean shows the expected deformation, overlaid with a contour map that
shows 95% credible interval lengths derived from the posterior distribution of deformation
parameters. We see that lumbar spine vertebrae L1 to L4 (L4 is the fifth vertebra from
the top) deformations have an uncertainty around 1 millimeter. In contrast, the lumbar
vertebra L5 deformation has an uncertainty up to 3 millimeter. This may indicate that
the registration failed for L5. In three dimensional examples similar problems can occur
due to anatomical abnormalities.

This illustrates the uncertainty estimation on the subject level between one fixed and one
moving image. We generated this uncertainty map by sampling form a posterior distri-
bution of deformations using Hamiltonian Monte Carlo (HMC). We will now carefully
develop the model underlying this example and introduce the HMC sampler, which is a
member of the Markov Chain Monte Carlo family.
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Figure 2: An template image I0 represents a typical anatomy. We model individ-
ual patients images Ik as non-linear deformations ϕk from the template. We will
estimate the deformations from moving to fixed images with the goal of mapping
all images into the same coordinate system, thus the inverse notation.

2.3 Model

We analyze geometric differences of the spine anatomy through geometric deformations.
Our model describes patient images Ik as deformations ϕk from a common template image
I0 (Figure 2). We model deformations with cubic multidimensional B-spline polynomial
basis functions B : R3 → R3 (Unser, 1999). The model parameters are the weights
associated to each basis function. If we pick C control points placed on a uniform grid
over the template image I0, then we need to estimate a total of q ∈ R3C weights in
three dimensional volumetric CT images with voxels positions xi ∈ R3. The estimated
deformations (Nx is the support of the B-splines at spatial position x)

ϕk(x, q) = x+
∑
xi∈Nx

qi B (x− xi)

for each subject k can then be statistically analyzed.

There are two sources of uncertainty when estimating model parameters q from two im-
ages I0 and Ik: image noise and model misspecification. The images are acquired with
CT scanner which like other measurement devices introduce noise. The model misspeci-
fication is due to the crude assumption that the template can be deformed into a subject
anatomy not accounting for shape difference that cannot be capture by such a simple
model, e.g. missing part or entire vertebra in a patient. To capture these uncertainties,
we assign a prior distribution to the parameters and sample form its posterior to compute
posterior mean and posterior errors.

To control the spatial smoothness of the deformations we put a normal prior distribution

q ∼ N(0, (λ1Λ)−1) =
1

Z
exp

(
λ1

N∑
i=1

‖ Jacϕk(xi, q)‖2`2

)
=

1

Z
(−λ1 Reg(q))

on the deformation parameters. The term Reg(q) can be seen as a form of regularization,
penalizing large first order derivatives of the deformations; lower values represent more
regular deformations. The block precision matrix Λ is defined by the element-wise partial
derivatives of the B-spline basis matrix (⊗ denotes the Kronecker product)

Λ = I3 ⊗
3∑
i=1

(
∂B
∂xi

T ∂B
∂xi

)
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and the Jac is the Jacobian matrix. For more details see Andersson et al. (2007).

We then make the link to the imaging data through the likelihood term

(Ik | q) ∼
1

Z

(
−

N∑
i=1

(Ik ◦ ϕk(xi, q)− I0(xi))
2

)
=

1

Z
exp (−Dist(I0, Ik, q))

measuring the dissimilarity Dist(I0, Ik, q) between template image I0 and subject image
Ik after applying the deformation ϕk; lower values represent a better match. Combining
the prior and likelihood term into the posterior distribution yields

(q | Ik) ∼ 1

Z
exp (−Dist(I0, Ik, q)− λ1 Reg(q)) ,

which completes the Bayesian model for geometric deformations.

To make inference about deformation parameters, we can now compute different func-
tionals of the posterior distribution. For example, the posterior mean

θ = E(q | Ik) =

∫
q π(q | Ik) dq.

This R3C dimensional integral is intractable analytically and to solve it one must resort
to numerical methods. The first idea of evaluating the posterior at evenly distributed
grid points is infeasible due to the large number of grid points. A clever alternative are
Markov Chain Monte Carlo (MCMC) sampling algorithms. The main idea for sample-
based estimators of integrals is to use the sample mean estimator

θ̂ =
1

T

T∑
t=1

qt

with draws from the posterior distribution

q1, . . . , qT ∼ (q | Ik).

A wide range of MCMC samplers exists. In the next section, we will introduce the basic
principle and elaborate on the more advanced Hamiltonian Monte Carlo.

In addition to the sample mean, we can also compute credible intervals from samples by
calculating sample quantiles. For Figure 1, we computed element-wise quantiles of the
parameter vector

q =
(
q1, . . . , q3C

)T
to obtain a 95% confidence interval

θ̂h =
(
q1(α), . . . , q

3C
(α)

)T
and θ̂h =

(
q1(1−α), . . . , q

3C
(1−α)

)T
by ordering parameters from smallest to largest indicated by (.), where (α) is the αth
smallest value. We can then compute deformations by plug-in and compute the desired
credible interval lengths as the difference between the 2.5% and 97.5% percentiles

|ϕ(x, θ̂h)− ϕ(x, θ̂l)|.
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2.4 Markov Chain Monte Carlo

As the name suggests, MCMC is composed of a Markov chain and a Monte Carlo simu-
lation. For lower dimensional integrals Monte Carlo simulations without Markov chains
are possible. This works by drawing independent samples from π(θ | Ik)

θ̂ =
1

T

T∑
i=1

qi, q1, . . . , qT
indep.∼ π(q | Ik).

However Monte Carlo simulations breaks down for problems of three or more dimensions.
In this case, we resort to constructing a Markov chain that generates dependent samples

θ̂ =
1

T

T∑
i=1

qi, q1, . . . , qT
dep.∼ π(q | Ik).

Metropolis algorithm is the simplest MCMC algorithm. Consider a finite sample space.
Think of it as a state space, where each outcome corresponds to a state. Metropolis can
sample from an unormalized probability π(x) on finite state space X . Define a Markov
transition matrix J(x, y) that assigns nonzero probabilities of moving from x to y and y
to x. Metropolis changes J(x, y) to a new matrix K(x, y) that corresponds to a possibly
unnormalized version of π(x).

The algorithm contains the following steps:

• Pick initial point in sample space x0

• Pick potential next move from J(x, y) with J(x, y) > 0 and J(y, x) > 0

• Evaluate

A(x, y) =
π(y)J(y, x)

π(x)J(x, y)

• If A(x, y) ≥ 1 move to y

• If A(x, y) < 1 flip a coing with this success probability

– and move to y if success

– otherwise stay at x

We can write this in matrix form

K(x, y) =


J(x, y) if x 6= y, A(x, y) > 1

J(x, y)A(x, y) if x 6= y, A(x, y) < 1

J(x, y) +
∑

z:A(x,z)<1 J(x, z)(1− A(x, z)) if x = y

Then we can use the Fundamental Theorem of Markov Chains to prove that

Kn(x, y)→ π(y) for each x, y ∈ X
or in other words, the matrix Kn = K1K2 · · ·Kn converges to a matrix

πK = λπ ↔ πK = π

with one left eigenvector π and one eigenvalue λ = 1.

To sample from π, apply J to the left of the current sample position xt. This will give us
the next sample xt+1. A nice introduction to the subject of MCMC is Diaconis (2009).

8



2.5 Hamiltonian Monte Carlo

As the name suggest, HMC involves defining a Hamiltonian function H : Rd × Rd → R
with a potential energy term V (q) which is equal to the − log transformed posterior
distribution and a kinetic energy term K(p) which will have the quadratic form 1

2
pTGp.

The sum of both terms
H(q, p) = V (q) +K(p)

is the Hamiltonian function. It can be shown that the following algorithms produces
samples from the distribution of the random variable (q | Ik):

• Fix a starting position q0

• Draw p0 from a Gaussian N(0, G−1)

• Solve the Hamiltonian system

dq

dt
=
∂H

∂p
and

dp

dt
= −∂H

∂q

for a predefined amount of time and record end point q1

• Repeat the previous steps T0 + T times yielding q1, . . . , qT0 , . . . , qT

• Then qT0 , . . . , qT ∼ (q | Ik) are samples from the posterior. Note that samples before
T0 will be discarded because they could be biased due to a bad starting point.

The MCMC samples are correlated and standard Monte Carlo errors estimates do not
apply. It is common to use trace plots to choose the appropriate T , which we found to be
T = 500 in our spine registration problem. We refer to Seiler et al. (2014); Holmes et al.
(2014) for a theoretical investigation on this topic. The book chapter by Neal (2011) is
an excellent source for more background material and illustrative toy examples on HMC.

2.6 Software Implementations

The main HMC sampling algorithm is easy to implements and contains only few steps.
The tricky part is solving the Hamiltonian system. This is usually done using an Euler
numerical scheme. However the fine tuning of parameters is not straight forward and
software has been implemented to automize this step (Carpenter et al., 2016).

A specific implementation of HMC for medical images can be found on the GitHub
repository of the first author.3

2.7 Convergence Diagnostics

Some statisticians4 argue that diagnostics for MCMC only finds “obvious, gross, embar-
rassing problems that jump out of simple plots”. One of the concerns has to do with

3Code available: https://christofseiler.github.io/BayesianImageRegistration
4http://users.stat.umn.edu/~geyer/mcmc/diag.html
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bad starting points. Consider an event B having high probability under the equilibrium
distribution, that is, the distribution that is unchanged if we ran the MCMC sampler for
a long time. Suppose we are unlucky and start the sampler at a bad starting point and
it would take a long time, say longer than the age of the universe to reach B, then the
chance of diagnosing this problem will be highly improbable.

Keeping this limitation in mind, convergence diagnostics of MCMC samplers are the only
way to quantify the quality of our sample. The following description builds heavily on
(Robert and Casella, 2009, Chapter 8). The R package coda offers implementations for
the most popular diagnostic tools.

We consider two types of convergence of MCMC methods:

1. Convergence to the stationary distribution: Check that distribution of the chain xt
is the stationary distribution f . In practice this is impossible to test with just one
chain. Several chains have to be run to test this and it can actually never be tested
exactly. What is tested is how independent the chains are at time t when started
at different starting positions.

2. Convergence of averages: Once stationarity is established, we can focus on evaluat-
ing the Monte Carlo error. However, in contrast to the usual Monte Carlo error, we
have additional problems to take into account: the samples are dependent across
time. The stronger this dependence the slower we explore the posterior distribution.

To be more concrete, define an estimator

θ̂ =
1

T

T∑
t=1

h(xt)

of the parameter
θ = E(h(X)).

The variance of this estimator Var(θ̂MC) in case of identically and independent Monte
Carlo samples is given by the central limit theorem. The variance of this estimator
Var(θ̂MCMC) in case of dependent Markov chain samples gets worse by a factor that
depends on the amount of correlation between draws. This can be measured by the
effective sample size

TMC =
TMCMC

κ(h)

with the autocorrelation time

κ(h) = 1 + 2
∞∑
t=1

corr (h(x0), h(xt)) .

Intuitively, the larger κ(h) the more dependent are draws and we need to increase the
sample size to reach the Monte Carlo error. If draws are independent then we have
κ(h) = 1 and the Monte Carlo and MCMC samples are equivalent. Diagnostics tools can
now be build on this concept.

For more involved samplers, e.g. the HMC sampler, diagnostics becomes even more com-
plicated. Recently, we have reformulated HMC in the language of Riemannian geometry
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and applied theorems from Joulin and Ollivier (2010) on Markov chain curvature that
inspired a new diagnostic tool for HMC (Seiler et al., 2014; Holmes et al., 2014). The idea
of Markov chain curvature is similar to measuring the autocorrelation time of the Markov
chain, in fact, the curvature is inverse proportional to the correlation between draws from
the Markov chain. Intuitively, a random walk moves faster through low density regions
of the space, and slower through high density regions.

2.8 Related Work

We will distinguish between two types of deformations: small deformations and large
deformations. To keep this book chapter focused on uncertainty quantification we will
not go into the difference between the two types expect to say that one can think of large
deformations as compositions of small deformations.

First, we focus on the small deformations setting. Allassonnière et al. (2007, 2010)
describe a maximum a posterior estimation (MAP) procedure based on an Expectation-
Maximization (EM) algorithm to estimate the template from a set of subject images. Sim-
ilarly Van Leemput (2009) estimated the MAP template using a combination of pseudo-
likelihood technique (Besag, 1975), EM algorithm, and Laplace’s method. In contrast,
Risholm et al. (2010b,a) sample from the posterior distribution of pairwise registration
parameters using Metropolis-Hastings which is part of the family of MCMC algorithms.
In addition to MCMC, Risholm et al. (2013) marginalize over hyperparameters (mod-
eling noise in the image intensities) using Laplace’s method. Simpson et al. (2012) use
mean-field variational Bayes to approximate the full posterior distribution. This is an
optimization-based alternative to MCMC and much faster in practice. However it is
unclear how accurate the posterior distribution is approximated with this method. In
contrast, MCMC-type methods enjoy the property that they are sampling exactly from
the true posterior distribution given that the sampler is run for long enough. Quantifying
running times is however very tricky and usually only possible for simplified toy exam-
ples. In Simpson et al. (2015) an additional Laplace’s method is used for hyperparameters
analog to Risholm et al. (2013). Heinrich et al. (2016) propose an alternative approach
using dynamic programming to find the MAP.

Now, we focus on the large deformations setting. Zhang et al. (2013) use Hamiltonian
Monte Carlo (HMC) to sample diffeomorphic deformations. The HMC algorithm is part
of a Monte Carlo EM algorithm to estimate an image template. This is quite compu-
tational expensive and Zhang and Fletcher (2015) provide a fast algebraic approxima-
tion that is useful in a sampling scheme. Wassermann et al. (2014) approximate the full
Bayesian posterior distribution by a variational formulation. Their method can be viewed
as a combination of the Laplace’s method (describing stochastic differential equations by
Gaussian processes) and variational Bayes (minimizing the Kullback-Leibler divergence).
Yang and Niethammer (2015) propose a low rank approximation of the Hessian matrix
at the mode of the posterior distribution.
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3 Nonparametric Bayesian Statistics

3.1 Background

The following introduction to Bayesian Nonparametrics (BN) builds strongly on the lec-
ture notes by Larry Wasserman.5 A good reference on the theoretical background are the
lecture notes by van der Vaart.6

We replace the finite dimensional model from the previous section

{f(y|θ) : θ ∈ Θ}

with an infinite dimensional model and constrain the second derivate of possible functions
to be finite

F =

{
f :

∫
(f ′′(y))2dy <∞

}
.

Other constrains are possible but for illustrative purposes we focus on this model. In
order to translate parametric Bayesian ideas to the nonparametric setting, we need to
address some questions. First, we will need to put a prior π on an infinite dimensional
space. For example, suppose we observe

X1, . . . , Xn ∼ F

with unknown distribution F with density f . We put prior π on set of all distributions
F . In many cases, we cannot explicitly write down a formula for π. This follows from
technical arguments about the infinite dimensional set F that we will not cover in this
short introduction. How can we describe a distribution π in another way than writing it
down? If we know how to draw from π we can get many samples and then even without
knowing the formula for π we can plot and summarize it in any way we want. The idea
is to find an algorithm to sample from this model

F ∼ π

X1, . . . , Xn | F ∼ F.

The usual frequentist estimate of F is the empirical distribution function

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x).

To estimate F from a Bayesian perspective we put a prior on π on the set of all F . Such
a prior was invented by Ferguson (1973). The prior has two parameter: F0 and α denoted
by DP(α, F0). F0 is a distribution function and should be thought of as a prior guess of
F . The number α controls how tightly concentrated the prior is around F0. The model
is

F ∼ DP(α, F0)

X1, . . . , Xn | F ∼ F.

But how to draw samples from this model? First to draw samples from the prior
DP(α, F0), we follow four steps:

5Lecture notes: http://www.stat.cmu.edu/~larry/=sml/nonparbayes.pdf
6Lecture notes: http://www.math.leidenuniv.nl/~avdvaart/BNP/
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1. Draw s1, s2, . . . independently from F0

2. Draw V1, V2, · · · ∼ Beta(1, α)

3. Stick breaking process: Let w1 = V1 and wj = Vj
∏j−1

i=1 (1− Vi) for j = 2, 3, . . .

• Imagine a stick of unit length

• Then w1 is obtained by breaking the stick at the random point V1

• The stick has now length 1− V1
• The second weight w2 is obtained by breaking a proportion V2 from the re-

maining stick

• The process continues and generates the whole sequence of weights w1, w2, . . .

4. Let F be the discrete distribution that puts mass wj at sj, that is, F =
∑∞

j=1wjδsj
where δsj is a point mass at sj

After we observe the data X = (X1, . . . , Xn), we are interested in the posterior distri-
bution. The same idea applies here, instead of writing down a formula we describe an
algorithm to sample for the posterior distribution. To sample from the posterior, we need
the following theorem. Let Fn be the empirical distribution.

Theorem 3.1 (Ferguson (1973)). Let X1, . . . , Xn ∼ F . Let F have prior π = DP(α, F0).
Then the posterior π for F given X1, . . . , Xn is DP(α + n, F̄n) where

F̄n =
n

n+ α
Fn +

α

n+ α
F0.

Since the posterior is again a Dirichlet process, we can sample from it the same way as we
did for the prior. We only replace α with α+n and F0 with F̄n. Thus the posterior F̄n is
a convex combination of the empirical distribution Fn and the prior guess F0. To explore
the posterior distribution, we could draw many random distribution functions form the
posterior. We could then numerically construct two functions Ln and Un such that

π(Ln(x) ≤ F (x) ≤ Un(x) for all x | X1, . . . , Xn) = 1− α

This is a Bayesian credible interval for F . When n is large then F̄n ≈ Fn.

3.2 Example

Unfortunately, most people will be affect by lumber back pain (LBP) during the coarse
of their lives. We classify the pain into acute and chronicle pain. The acute pain is
most commonly caused by muscle strain or ligament sprain. The chronicle pain is most
commonly cause by a disc tear, facet joint disorder, or sacroiliac joint disfunction.

In addition to the individual suffering of every patient, the society as a whole pays a big
price for the treatment of LBP. For instance, the direct costs of LBP to be at 2.6 billion
Euro, 6.1% of the total healthcare expenditure in Switzerland Wieser et al. (2011), which
results in a total economic burden between 1.6 and 2.3% of Swiss GDP.

Despite the enormous burden on individual patients and the society, the geometric vari-
ability of deformations of the spine are still unexplored. For example, it has not been
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Figure 3: Left: Lumbar back pain patient with scoliosis. Right: Abdominal pain
patient.

reported whether scoliosis patients (sidewise curvature of the spine) suffer more often
from LBP than normal patients (Figure 3).

To explore this issue, we will investigate geometric differences between LBP and abdom-
inal patients. We expect to see regional differences between the two patient groups. We
propose to estimate regions using a BN clustering method that allows to incorporate ge-
ometric prior information. This clustering algorithm will find spatially contiguous voxel
clusters (Figure 4) without knowing in advance the number of clusters.

3.3 Model

Deformation fields can be found by registration methods as described in the first part of
this book chapter. Additionally in this part we will assume that deformations are diffeo-
morphic, which means that they are differentiable and their inverses are differentiable.
The input to our clustering algorithm are deformation fields encoded as Stationary Veloc-
ity Fields (SVF), which can be obtain through various registration algorithms (Ashburner,
2007; Hernandez et al., 2007; Vercauteren et al., 2009; Lorenzi et al., 2013). The SVF v is
the unique solutions to the Ordinary Differential Equation (ODE) ∂φ(x, t)/∂t = v(ϕ(x, t))
with initial condition ϕ(x, 0) = identity. The reason that ODE’s are useful for image reg-
istration is that we can generate a diffeomorphic mapping of a patient image Ik to a
template image I0 with I0(x) = Ik(ϕk(x)), spatial position x ∈ R3, intensity image
I : R3 7→ R, and diffeomorphic mapping ϕ : R3 7→ R3. This assumption makes sense for
spines in the absence of fractures and collapse of tissue.

We model the observed velocity fields as a linear combination of linear transformations

v(x) =

p∑
i=1

wi(x)

[
Li qi
0 0

] [
x
1

]
+ ε(x)

with an affine part Li, translational part qi, and additive independent and identically
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Figure 4: Parcellations in computational anatomy.

distributed voxelwise Gaussian noise ε(x). Our goal is to infer both the number of parcels
p and shape wi(x) with the assumption that wi(x) are non-overlapping binary weight
images.

We formulate this in terms of a BN model by vectorizing both the image matrix and the
linear transformations, and by introducing the binary matrix W that assigns n voxels to
p parcels v1...

vn

 = W


Vectorize(L1)

q1
...

Vectorize(Lp)
qp

+

ε1...
εn

 .
Each column represents one weight image wi(x). The columns can grow in size as more
more observations become available (higher resolution images). The parameters of inter-
est in this BN models are W, Li, and qi. The BN part of this model is the matrix W
because it is not fixed in column size.

Creating parcels in an image is similar to clustering voxels. We can formulate clustering
as a density estimation problem by using a mixture model to approximate densities. Each
component of the mixture model defines a cluster. Positions that are close to the mode
of one component are assigned the same label. In BN we can perform density estimation
using an extension of the Dirichlet process prior to the Dirichlet process mixture model.
We now give a short introduction to density estimation in BN.

Consider that we observe X1, . . . , Xn ∼ F from a distribution F with density f . Without
loss of generality we can assume that Xi ∈ R. Our goal is to estimate the unknown
density function f . The Dirichlet process is not an appropriate prior for this problem
because it produces discrete distributions and densities are continuous. An intuitive way
to construct the nonparametric estimation procedure is by starting with a parametric
model and letting the number of parameters go to infinity. Consider the Gaussian mixture

15



model

f(x) =
k∑
j=1

wjf(x; θj),

where f(x; θj) is normal and each component is parametrized with its mean and variance
θj = (µj, σ

2
j ). In this model, we would have to estimate the number of components k,

weights wj, and parameters µj, σ
2
j . In the Bayesian approach, we have to put priors on k,

wj, and µj, σj. One option is to separate the estimation task into two parts by comparing
the quality of a fixed set of models k = 1, . . . , K. Recently, it became popular to use an
infinite mixture model

f(x) =
∞∑
j=1

wjf(x; θj),

which trades the finite model comparison problem into a more continuous problem with
possible infinitely many components k. Nevertheless, as we will see, we still need to
pick a parameters that controls the number of components k indirectly. As a prior for
the parameters we could take θ1, θ2, . . . to be drawn from some F0 and we could take
w1, w2, . . . to be drawn from the stick breaking prior. This is known as the Dirichlet
process mixture model and is an extension of the Dirichlet process prior F ∼ DP(α, F0)
with the difference that we replace the point mass distribution δθj in the original form
F =

∑∞
j=1wjδθj by smooth densities f(x; θj). Combining everything, the model is

F ∼ DP(α, F0)

θ1, . . . , θn | F ∼ F

Xj | θj ∼ f(x; θj), j = 1, . . . , n.

It is important to note that the discreteness of F automatically creates a clustering of the
parameters θj’s. This can be considered an implicit prior for the number of components
k. We can control the number of k indirectly by choosing an appropriate concentration
parameter α. However, there is no free lunch and choosing α usually involves additional
priors (Escobar and West, 1995, 1998).

To complete the model, we also define Gaussian priors on transformation parameters Li
and qi. We decompose locally linear transformations

Aix+ bi = exp

([
Li qi
0 0

])[
x
1

]
using the Jordan/Schur decomposition

Li =
1

2
(Li − LT

i ) +
1

2
(Li + LT

i )

Li = rotation + scaling = θ

 0 −r3 r2
r3 0 −r1
−r2 r1 0

+ diag(s)

to obtain a rotation axis
[
r1 r2 r3

]T
and a rotation angle θ. This rotation axis and

rotation angle are better interpretable than a transformation matrix and a translation
vector and allow us to define subjective priors. For instance, we may want to define a
prior on the angle to favors deformations centered at 0◦ with standard deviation 30◦.
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3.4 Gibbs Sampler

If we are only interested in cluster assignments W and ignore the transformation param-
eter, we can integrate out Li and qi, and sample from the remaining integral using the
distant dependent Chinese Restaurant Process (Blei and Frazier, 2011). This process is
a Gibbs samplers. Gibbs samplers are convenient whenever we wish to sample from a
posterior that can be decomposed into conditional distributions for which fast ways of
sampling are available. For instance, to draw sample from this joint distribution

θ1, . . . , θT ∼ π(θ1, θ2 | y)

we can iterate between their respective conditional distributions,

• Step 1: θ1i ∼ π(θ1 | y, θ2i−1)

• Step 2: θ2i ∼ π(θ2 | y, θ1i )

and repeating it many times to obtain samples from the joint distribution(
θ11, θ

2
1

)
, . . . ,

(
θ1T , θ

2
T

)
∼ π(θ1, θ2 | y).

We use the distant dependent Chinese Restaurant Process to draw samples form the
marginal distribution for LBP versus abdominal pain dataset as illustrated in Figure 5.
Details on the technical implementation can be found in our recent conference article
(Seiler et al., 2013).

3.5 Software Implementations

An implementation of a variety of BN tools is available in the R package DPpackage. Our
specific implementation for medical images can be found on the GitHub repository of the
first author.7

3.6 Related Work

The usage of BN in computational anatomy is still in its infancy. Related work in the
medical context are the detection of spatial activation patterns in fMRI (Kim et al., 2006)
or tractography segmentation (Wang et al., 2011) using the Dirichlet processes.

4 Conclusions and Open Problems

In this book chapter, we reviewed general concepts in Bayesian statistics and reported our
experience with applying them to problems in computational anatomy. In the parametric
part, our treatment focused on the small deformation framework. The translation of our
work to large deformation framework, especially the translation of diagnostics tools for
MCMC is currently open. A successful treatment of diagnostics for large deformation

7Code available: https://github.com/ChristofSeiler/BayesianNonparametrics
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Figure 5: Colors are clusters. Left row: Template spine image. Middle row: Back
pain patients. Right row: Abdominal pain patients.
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will most likely require an even stronger interplay between geometry and probability. As
reported in the nonparametric part, we have found only sparse literature on applying BP
ideas to computational anatomy problems.

Besides the theoretical developments, it will be paramount to provide the community
with efficient software implementations in the form of R packages for reproducible re-
search. The recent growing community around the STAN software (Carpenter et al., 2016)
implementing HMC will hopefully facilitate a more routine usage of Bayesian statistics
in computational anatomy.
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2007. Towards a coherent statistical framework for dense deformable template estima-
tion. J. R. Stat. Soc. Ser. B Stat. Methodol., 69(1):3–29.

Allassonnière, S., E. Kuhn, and A. Trouvé
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