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Abstract Girls and women with Turner syndrome (TS)

have a completely or partially missing X chromosome.

Extensive studies on the impact of TS on neuroanatomy

and cognition have been conducted. The integration

of neuroanatomical and cognitive information into one

consistent analysis through multi-table methods is dif-

ficult and most standard tests are underpowered. We

propose a new two-sample testing procedure that com-

pares associations between two tables in two groups.

The procedure combines multi-table methods with per-

mutation tests. In particular, we construct cluster size

test statistics that incorporate spatial dependencies. We

apply our new procedure to a newly collected dataset

comprising of structural brain scans and cognitive test

scores from girls with TS and healthy control partici-

pants (age and sex matched). We measure neuroanatomy

with Tensor-Based Morphometry (TBM) and cognitive

function with Wechsler IQ and NEuroPSYchological
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tests (NEPSY-II). We compare our multi-table testing

procedure to a single-table analysis. Our new procedure

reports differential correlations between two voxel clus-

ters and a wide range of cognitive tests whereas the

single-table analysis reports no differences. Our find-

ings are consistent with the hypothesis that girls with

TS have a different brain-cognition association struc-

ture than healthy controls.1
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1 Introduction

Turner syndrome (TS) is a genetic disorder caused by

a complete or partial absence of one X-chromosome in

females. TS occurs in about 1 in 2000 newborn girls

(Sybert and McCauley, 2004; Gravholt, 2005) and has

been linked to complex aberrant neuroanatomy (e.g. Hong

et al. (2014)) and selective impairments in cognitive

function (e.g. Hong et al. (2009)). Associations between

neuroanatomical and cognitive profiles are rarely eluci-

dated with few notable exceptions (e.g. Brown et al.

(2004)).

We will refer to the joint statistical analysis of two

separate data tables or matrices as multi-table analysis.

One reason for the paucity of multi-table analysis be-

tween neuroanatomy and cognition is the heterogeneity

of the different data sources. Brain images and cognitive

subtest scores are measurements that live in different

1 This is a post-peer-review, pre-copyedit version of an ar-
ticle published in Neuroinformatics. The final authenticated
version is available online at: http://dx.doi.org/10.1007/

s12021-017-9351-z.

http://dx.doi.org/10.1007/s12021-017-9351-z
http://dx.doi.org/10.1007/s12021-017-9351-z
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mathematical spaces and are interpreted by different

experts with significantly different scientific training.

One approach to study brain-cognition associations

is through pairwise testing between brain regions and

cognitive subtests. This approach ignores the dependen-

cies between regions and between cognitive subtests. It

assumes that brain regions are known a priori. How-

ever, this is not the case for regions in the presence

of brain disorders and disease. This approach is also

subject to multiple testing, as statistical tests are per-

formed for each brain region and cognitive subtest pair,

and one has to control for false discoveries by adjusting

p-values using the Family-Wise Error Rate (FWER)

or False Discovery Rate (FDR). Pairwise approaches

are also unable to capture multivariate associations be-

tween brain regions and cognitive subtest variables.

In contrast, a multi-table approach to this prob-

lem can go beyond pairwise associations by consider-

ing linear combinations of the columns in both data

tables. Many methods are available; Canonical Corre-

lation Analysis (Hotelling, 1936), Partial Least Squares

(Tucker, 1958; Wold, 1966; Fornell and Bookstein, 1982),

Reduced-Rank Regression (Izenman, 1975) and their

penalized versions for the high dimensional setting. The

increased power to detect more than pairwise associa-

tions comes at the price of interpretability. It is often

challenging to link results back to medically actionable

information, partly because most multi-table methods

are exploratory and do not assign significance levels.

In this article, we introduce a new two-sample test-

ing procedure for multi-table method based on sparse

Canonical Correlation Analysis (sCCA) (Parkhomenko

et al., 2007; Waaijenborg et al., 2008; Parkhomenko

et al., 2009; Lê Cao et al., 2009; Witten et al., 2009).

Sparse CCA integrates two data sources observed on

the same set of participants. It finds sparse, maximally

correlated linear combinations of variables in both datasets

simultaneously. Our procedure assigns significance lev-

els using permutation tests and incorporates spatial de-

pendency structure in the image domain using a newly

constructed cluster size test statistic. Our procedure

comprises the following steps: First, add column with

group labels to the non-imaging data table. Second,

compute sCCA between the non-imaging and imaging

data tables. Third, compute test statistics from sCCA’s

canonical variables. Fourth, randomize group labels by

permutation and recompute steps two and three many

times to obtain null distribution of test statistics. Fifth,

assign significance levels by comparing observed test

statistics to the null distribution.

Our new method provides two advantages over pair-

wise association testing: First, pairwise tests miss weak

associations due to testing many statistical hypothe-

ses, which requires us to adjust for multiple compar-

isons and thus reduces the power to discover weaker as-

sociations. Second, pairwise tests ignore dependencies

between neuroanatomy and cognition: multiple brain

regions will most likely impact multiple cognitive func-

tions. Such effects may not be detectable when consid-

ering brain regions individually.

The primary neuroscience objective of the present

article is to elucidate complex interactions between sub-

sets of neuroanatomical features and subsets of cogni-

tive features. We measure neuroanatomy using Tensor-

Based Morphometry, where local volume differences are

represented by Jacobian determinant maps, and cogni-

tive function using test scores from the NEuroPSYcho-

logical (NEPSY) battery and the Wechsler IQ test.

After describing our Turner syndrome dataset com-

prised of brain images, IQ and cognitive subtests, Tan-

ner stages to track puberty, and other information about

our participants, we will describe our preprocessing work-

flow including image registration and handling of miss-

ing values. Next, we will introduce our new two-sample

multi-table testing procedure and compare it to a single-

table analysis. We will apply our procedure to the Turner

syndrome dataset and finish with a report of the po-

tential discoveries of interest from a neuroscience view-

point.

2 Materials and Methods

2.1 Participants

This study is part of an ongoing longitudinal investi-

gation into gene, brain, and behavior in girls with TS.

We included 54 girls with monosomic TS (mean age

10.2± 2.5, range 5.5− 15.9 years) and 48 healthy con-

trol participants (mean age 10 ± 2.1, range 5.2 − 14.2

years). We recruited participants with TS through the

national Turner Syndrome Society and the Turner Syn-

drome Foundation, and online advertisements at Stan-

ford University School of Medicine. We recruited con-

trol participants through local print media and parent

networks. The local Institutional Review Board at the

Stanford University School of Medicine approved this

study. We obtained informed written consent from le-

gal guardians for all participants, and written assent

from participants over 7 years of age.

2.2 MR Imaging Acquisition

We utilized a mock MRI scanner prior to the actual scan

to desensitize participants to the sights and sounds of
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an actual MRI environment. The participants under-

went behavioral training to help reduce motion-related

artifacts. We acquired all imaging data at the Stanford

University Lucas Center for Medical Imaging. Magnetic

resonance images of the young cohort were collected

between 2012 and 2015 on a GE Healthcare Discovery

750 MRI whole-body MR system (GE Medical Systems,

Milwaukee, WI) using a standard birdcage head coil.

We employed a fast spoiled gradient recalled (FSPGR)

echo pulse sequence to obtain a high-resolution T1 anatom-

ical brain image of each subject sagittal slices, repeti-

tion time = 8.2 ms, echo time = 3.2 ms, inversion time

= 450 ms, flip angle = 12◦, number of excitations = 1,

field of view 240×192 mm; matrix 256×256; 176 slices;

voxel size = 1.0 × 1.0 × 1.0 mm thickness, acquisition

time = 4 min 29 seconds.

2.3 Image Processing

We applied the following preprocessing steps to all scans:

alignment to the plane defined by the anterior and pos-

terior commissures (ACPC), voxel resampling isotrop-

ically at 1mm, correction of bias field with N4 (Smith,

2002), and removal of voxels comprising skull and scalp

(Tustison et al., 2010).

We then employed a standard Tensor-Based Mor-

phometry (TBM) approach (Davatzikos et al., 1996;

Freeborough and Fox, 1998; Gee and Bajcsy, 1998; Chung

et al., 2001) that permits localization of brain struc-

tures that are different in size and shape but do not

necessarily conform to exact sulcal-gyral locations. The

key step in TBM is the computation of deformation

fields (and their inverses) that map from a template

image to participant images. For this article, we built

a customized brain template from participant images

and associated deformations using the Advanced Nor-

malization Tools (ANTS) template construction script

(Avants et al., 2011) (details can be found on the first

author’s GitHub repository). This, in turn, generates a

spatial gradient of deformation fields that yields a Ja-

cobian matrix at every voxel position. We focused on

the determinant of each Jacobian matrix encoding local

volume changes of tissue expansion (bigger than one)

and contraction (smaller than one) with respect to the

template. We follow convention established by (Leow

et al., 2007) and log-transformed the Jacobian determi-

nant maps to symmetrize volume changes around zero

to be consistent with previous analyses.

Our statistical analysis focuses on gray matter re-

gions. We use the segmentation algorithm FAST (Zhang

et al., 2001) to define the gray matter mask in our

custom built template brain. We apply this mask to

each log-Jacobian determinant map to extract volume

changes of gray matter voxels for each subject.

2.4 Cognitive Assessment

We assessed the cognitive status of our participants us-

ing the NEPSY-II (Brooks et al., 2009). The NEPSY-II

classifies cognitive functions into six domains: Atten-

tion and Executive Functions, Language, Memory and

Learning, Sensorimotor, Social Perception, and Visu-

ospatial Processing. Test administrators followed stan-

dard procedures as outlined in the published product

manuals; all cognitive/neuropsychological variables con-

sisted of age-normed scaled scores. Overall 34 NEPSY-

II subtests were used in our analysis.

Additionally, we assessed participants cognitive abil-

ities using the Wechsler Preschool and Primary Scale of

Intelligence-Third Edition (WPPSI-III; Wechsler (2002))

for girls aged between 4 and 5 years and the Wechsler

Intelligence Scale for Children-Fourth Edition (WISC-

IV; Wechsler (2003)) for girls aged between 6 and 16

years.

2.5 Puberty Stages

In addition to the age of each participant we collected

information about puberty status in the form of Tan-

ner stages (Marshall and Tanner, 1969) as derived from

examination of the participant by the study physicians

(LH, TG). Tanner stages in girls classify puberty into

five discrete stages, ranging from prepubertal to mature

stage of breast development and pubic hair. Consider-

ing this type of information is crucial to account for

different developmental trajectories of our participants.

2.6 Missing Values

We excluded all subtests and participants that exhibit

more than 20% of missing entries. This reduces the orig-

inal sample size by four participants to 98. We imputed

the remaining 3.7% of missing values using predictive

mean matching implemented in the R package mice. We

obtained an imputed dataset by averaging over 20 im-

puted datasets for subsequent statistical analysis. For

visualizations of the missing values pattern and the im-

putation variability see Interactions.html in the sup-

plementary material. To confirm that our imputation is

unbiased, we repeated the analysis five times with dif-

ferent random seeds.
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2.7 Multi-Table Analysis:

Sparse Canonical Correlation Analyses

We collected Jacobian determinant maps in a matrix X

with dimensions 98 (number of participants) × 710, 320

(number of gray matter voxels). The second matrix Y

contained cognitive subtest scores and has dimensions

98 (number of participants) × 27 (number of NEPSY

subtests). It is not possible to apply standard CCA di-

rectly to this problem because we have more voxels than

observations resulting in an underdetermined system of

equations. Sparse CCA reduces the solution space to

sparse solutions meaning that many noisy coefficients

will be set to zero. In addition to making the CCA

problem solvable, sCCA also provides us with isolated

clusters of coefficients without having to define an ad-

ditional thresholding parameter. Spatially contiguous

clusters occur because the log-Jacobian maps are spa-

tially smooth.

Successful employment of sCCA in other recent neu-

roimaging studies have been reported in the literature,

Avants et al. (2010); Chi et al. (2013); Duda et al.

(2013); Avants et al. (2014). The related PLS method is

also widely and successfully used in neuroimaging stud-

ies, Streissguth et al. (1993); Bookstein (1994); McIn-

tosh et al. (1996); McIntosh and Lobaugh (2004); Kr-

ishnan et al. (2011); Lorenzi et al. (2016a,b).

Sparse CCA provides a linear combination of vox-

els in Jacobian determinant maps that are maximally

correlated to a linear combination of cognitive subtests.

We call these linear combinations, canonical variables

v and w. To find maximally correlating canonical vari-

ables, we solve

maximize
v,w

{
Corr(Xv,Yw)

}
subject to a constraint on the l2 norm ‖v‖22 ≤ 1, ‖w‖22 ≤
1, and a constraint on the l1 norm ‖v‖1 ≤ c1, ‖w‖1 ≤ c2
of the canonical variables. We maximize this objective

function (Witten et al., 2009) using the R package PMA

and find an optimal sparsity regularization parameter

pair c1 and c2 through permutation tests (explained in

next section).

This optimization problem has an intuitive inter-

pretation; we project X onto the candidate canonical

variable v, and Y onto w resulting in two new vectors

that are elements in a n-dimensional Euclidean space

(this dimension is given by the number of observations).

In this common n-dimensional space we optimize corre-

lation by reprojecting X and Y onto slightly modified

canonical variable candidates until we find the maxi-

mum.

The signs of canonical variables v and w are not

identifiable. More precisely, the following solutions (v, w)

and (−v,−w) are equivalent. We account for this by

constructing score functions and test statistics that are

invariant to sign flips.

2.7.1 Group Differences

The main goal of this study is to find differences be-

tween TS and control girls in terms of brain-cognition

associations. To accomplish this goal, we designed a new

nonparametric permutation-based test procedure.

We have three different sources of information: First,

morphometry measurements in the form of log-Jacobian

maps stored as images. Second, the cognitive tests stored

in a data table. Third, the group label factor with two

levels encoding whether a participant belongs to the TS

or healthy control group. To make the data amenable

for analysis with sCCA, we split the data into an imag-

ing and non-imaging table by joining group labels and

cognitive tests, denoted by Ỹ. In this form, we can pass

it to sCCA and compute maximally correlated canoni-

cal variables. Cognitive tests will have large coefficients

in the canonical variables if they correlate with mor-

phometry measurements. In addition, large group la-

bel coefficients provide evidence of differential interac-

tions between morphometry measurements and cogni-

tive tests.

2.7.2 Computing Canonical Variables

In sCCA, we need to define one regularization parame-

ter per data table c1 and c2. We find optimal regulariza-

tion parameters for the TS group by the permutation-

approach implemented in R package PMA, which com-

putes the null distribution of Corr(Xv,Yw) and se-

lects the most significant model according to the high-

est z-statistic. We choose not to regularize the cogni-

tive subtest canonical variables because we have more

observations than subtests and thus all cognitive coeffi-

cients can be estimated. The regularization strength for

the morphometry measurements will set the detectable

cluster size. A strong regularization will produce small

clusters, whereas weak regularization large clusters. In

case of strong correlations this optimization will choose

a weak regularization and produce large voxel clusters,

whereas with weaker correlations it will choose a strong

regularization and produce small voxel clusters.

Before going into details of the randomization test

with permutations, we define permutations π to be in

the group of permutations π ∈ G, an element from that

group describes a reordering of the rows of Ỹ by sam-

pling rows without replacement. We further define that

the first permutation π1 is the identity permutation rep-

resenting the unpermuted case, and the other 1−B per-
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mutations are actual permutations π2, . . . , πb, . . . , πB to

create the null distribution.

Our procedure starts by computing the unpermuted

observed case (X, π1(Ỹ)) by first optimizing regulariza-

tion parameters c1 and c2 and then solving(
v(π1), w(π1)

)
= maximize

v,w

{
Corr(Xv, π1(Ỹ)w)

}
.

Next, we compute sCCA’s on the permuted datasets

(X, πb(Ỹ)) by optimizing regularization parameters c1
and c2 and then solving(
v(πb), w(πb)

)
= maximize

v,w

{
Corr(Xv, πb(Ỹ)w)

}
.

To assign significance levels to voxels, cognitive tests,

and group labels, we need to define test statistics. A

good test statistic is problem-specific. In our case, we

have to design a separate test statistic for morphome-

try measurements X, cognition tests, and group labels

Ỹ incorporating the different nature of the data. For

X, we include the spatial nature of log-Jacobian maps

by defining cluster size test statistics, and for Ỹ, we

consider the absolute values of the canonical variables

directly.

2.7.3 Test Statistic for Morphometry Measurements

On the imaging side, we design a test statistic that cap-

tures the spatial dependency structure of log-Jacobian

maps. We begin by mapping the vector v(πb) to its

corresponding spatial image. We then threshold vox-

els that have non-zero coefficients resulting in a binary

image, and group neighboring non-zero voxels into clus-

ters. This will result in a list of voxel clusters ordered

from largest to smallest Ω1, . . . , Ωk.

To increase power to detect larger clusters, we only

consider clusters of size at least half the smallest re-

gion in the Harvard-Oxford cortical atlas (half region

because this atlas combines left and right regions into

one label). In total we have K test statistics per image.

We define the kth cluster size test statistics to be

TX,k(v) =
∑
i∈Ωk

|vi|.

We can now compute p-values by counting the num-

ber of cluster sizes that are at least as large as the ob-

served size divided by the total number of permutations

p-valuek =
1

B

∑
b=1,...,B

I
{
TX,k

(
v(π1)

)
≤ TX,k

(
v(πb)

)}
for all k = 1, . . . ,K clusters.

Finally, to account for multiple testing of the K

cluster sizes, we adjust p-values using the Benjamini-

Hochberg (BH) procedure (Benjamini and Hochberg,

1995).

The size of the clusters depend on the location within

the gray matter. Some regions are anatomically larger.

This leads to larger cluster size test statistics in these

regions. To account for this location dependency in our

test statistic, we compare the cluster sizes according to

their rank, e.g. the unpermuted largest cluster with the

permuted largest clusters.

2.7.4 Test Statistic for Group Labels and Cognitive

Tests

We define the test statistic for the cognitive canonical

variables to be the magnitude of studentized absolute

values of the coefficients. We denote µ|wl| as the sam-

ple mean and σ|wl| as the sample standard deviation of

the lth element computed across all permutations. We

denote the statistic of the lth element of the coefficient

vector as

TỸ,l(w) =
∣∣∣ |wl| − µ|wl|

σ|wl|

∣∣∣.
This test statistic is invariant to sign flips to account

for non-identifiability inherent in sCCA.

By counting the number of times that the permuted

test statistic is at least as large as the unpermuted

statistic

p-valuel =
1

B

∑
b=1,...,B

I
{
TỸ,l

(
w(π1)

)
≤ TỸ,l

(
w(πb)

)}
we obtain the p-values for all subtests l = 1, . . . , 27 on

the same b = 1, . . . , B permutations. Since we obtain

27 p-values we again adjust using the BH procedure.

2.8 Relationship to Suprathreshold Cluster Size Test

We use cluster sizes as the test statistics to incorpo-

rate spatial dependencies between voxels. This is in-

spired by the suprathreshold cluster size permutation

test commonly used in neuroimaging studies (Poline

and Mazoyer, 1993; Roland et al., 1993; Nichols and

Holmes, 2002). The usual procedure is to perform sep-

arate two-sample tests at each voxel position using the

t-test or a rank-based test such as the Wilcoxon two-

sample rank test, and then to adjust for multiple test-

ing using the suprathreshold test. The simplest ver-

sion of the suprathreshold test comprises of two steps:

first threshold the voxelwise p-value image by a fixed

primary value, e.g. αI = 0.001, and second, identify
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the significantly connected spatial contiguous clusters

at this threshold using the secondary significant level,

e.g. αII = 0.05. By regulating the primary threshold

one can choose to detect few large clusters (large αI)

or many small clusters (small αI). The choice of the

primary threshold defines the “scale” of the analysis.

In our procedure, the first stage corresponds to find-

ing connected components in the zero/non-zero coeffi-

cient binary image, and the second stage corresponds

to counting cluster sizes in the usual way. Our proce-

dure thus differs in the way we handle the first stage,

adapting it to multi-table methods.

2.9 Single-Table Analysis:

Using Two Separate Principal Component Analyses

We compare our proposed permutation-based multi-

table analysis to single-table analyses. First, we perform

two separate Principal Component Analysis (PCA) on

the morphometry matrix X and the cognitive test ma-

trix Y. Then, we reduce the dimensionality by identi-

fying the PCs that explain a large amount of variabil-

ity and separate TS from healthy control participants.

Ideally, the major variability in the data is due to the

group difference, and we will only need to keep one

PC per matrix. We then represent morphometry and

cognition with their respective PCs. To test whether

there is an interaction between morphometry and cog-

nition, we can use a linear model with an interaction

term. We define the cognition PC as the response vari-

able, the morphometry PC as an explanatory variable

(including an intercept), and add and interaction term

diagnosis × morphometry PC. To assess if the inter-

action terms explains additional variability, we can use

ANOVA to compare the model “with interaction term”

to the model “without the interaction term”, or we can

test if the coefficient representing the interaction term

is zero.

3 Results

After data removal and imputation of missing values

in the cognitive subtests, our sample size was 53 TS

and 45 control participants. The two groups are age

matched. There is no evidence that the two age distri-

butions are shifted (p-value from two-sided Wilcoxon

rank sum test is p = 0.9), and no evidence for a differ-

ence in scale (Mood Two-Sample Test of Scale is p = 0.3

and Ansari-Bradley Test is p = 0.4). Furthermore, a

χ2 test of homogeneity for Tanner stages for the first

three stages (not enough observations in stage four and

five, so we merged stages three, four, and five) yielded

a p-value of 0.4, thus favoring the null hypothesis of

equal distribution of participants for the two groups.

The overall Full Scale IQ for TS girls is 94± 14 and for

control girls is 113 ± 12, clearly different between the

two groups.

A sampling bias might exist because of our recruit-

ment methods (conferences, online advertisements, lo-

cal print media, and parent networks). Comparable dif-

ferences in Full Scale IQ between children with TS and

healthy controls have been reported in the literature:

Rovet (1993) reported a mean difference of 13.4 in a

study comparing 67 children with TS and 27 healthy

controls, and Mazzocco (1998) reported a mean differ-

ence of 14.9 in a study comparing 29 children with TS

and 16 sibling healthy controls.

All reported p-values are adjusted using the Benjamini-

Hochberg (BH) procedure (Benjamini and Hochberg,

1995) to control the False Discovery Rate (FDR). If

not explicitly stated, we declare significance below an

FDR of 5%.

3.1 Multi-Table Analysis

3.1.1 Neuroanatomical Canonical Variable Plots

The permutation test for the morphometry measure-

ments yielded two significant clusters (Figure 1 top).

The optimal regularization parameter was 0.1. The clus-

ters are larger in the TS than in the control group (Fig-

ure 1 bottom). The clusters partially overlap with the

intracalcarine, precuneous, cuneal, and supracalcarine

cortex in the left and right occipital lobe.

3.1.2 Cognitive Canonical Variable Plots

The permutation test for the cognitive scores found 22

tests and the diagnosis as different (Figure 2). Tests

come from all five NEPSY domains. All marginal dis-

tributions of each test score are lower or similar in TS

compared to the healthy control group (Figure 3).

3.1.3 Joint Neuroanatomy-Cognition Plots

Our new procedure provides a filtering tool to select dif-

ferential correlations between a priori unknown brain

regions and cognitive tests. A non-zero effect of the

diagnosis reflects an interaction between brain regions

and cognitive test scores. We can explore this correla-

tion structure with scatter plots between cluster sizes

and cognitive tests (Figures 4 and 5). We compute clus-

ter sizes for each participant by summing over each par-

ticipant’s Jacobian determinant map within a cluster.
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Fig. 1 Top: Two significant voxel clusters from the multi-table differential correlation analysis. Bottom: Actual observed
cluster sizes for each participant in mm3. One point represents one participant. The points are arrange to avoid overlaps. If
overlap occurs, points are horizontally shifted by a small amount.

In both Cluster 1 and Cluster 2, we observe that

TS participants have lower scores compared to their

healthy controls. This confirms our findings from the

marginal distribution plots in Figure 3. Visually, we

can compare the two slopes per facet. For example, in

Cluster 1, Auditory Attention and Auditory Attention

Correction show a decline in test score with increas-

ing cluster size in the healthy control group and an

increase in test scores in the TS group. In Cluster 2,

Arrows and Picture Puzzles show an increase in test

score with increasing cluster size in the healthy control

group, whereas a decline in test score in the TS group.

We avoid assigning significance levels to the slopes

in the scatter plots because the cluster selection and

cognitive test selection was done on the same data. We

think of these plots as an exploratory way to interpret

the multivariate results.

3.2 Single-Table Analysis

In this section, we compare our multi-table analysis

with two single-table analyses. When doing PCA on the

cognition test and morphometry tables separately, we

notice that the first PC separates between control and

TS groups (Figures 6 and 7). We take advantage of this

by reducing our original data to two vectors. To test

for interaction, we compare two linear models. Model

one, has as the response variable morphometry PC1,

and explanatory variables, cognition PC1 and an inter-

cept. Model two, has the same terms plus an additional

cognition PC1 × diagnosis (TS or control) interaction

term. We found no evidence that the interaction term

explains more variance as the ANOVA comparison of

the two model fits yielded a p-value of 0.6. We also

tested the interaction term directly by testing the null

hypothesis that its coefficient is zero. This test yielded
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Fig. 3 Empirical cumulative distribution function of selected tests.

a p-value of 0.7 confirming the previous test of no evi-

dence for a global brain-cognition interaction.

4 Discussion

In this study we sought to investigate brain-behavior

associations of gray matter volume and cognitive abili-

ties in a large cohort of females with Turner syndrome.

Overall we found two voxel clusters and a wide range

of cognitive subtests that show an aberrant association

in TS compared to the control group.

4.1 Joint Neuroanatomy-Cognition Interpretation

Most functional imaging studies on TS report aberrant

activation in frontal and parietal lobes (Molko et al.,
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Fig. 4 Scatter plot of cluster size of Cluster 1 versus cognitive test scores. Points are participants. Lines are linear model fits.

2003; Kesler et al., 2004; Hart et al., 2006; Bray et al.,

2011). We observe putative, disorder-relevant findings

in the occipital cortex. We did not find aberrations in

frontal and parietal cortices. Discrepancies between our

and previous findings are expected considering our fo-

cus on brain-cognition as opposed to brain-only aber-

rations. Note that these results do not contradict but

extend previous findings.

The heterogeneous cognitive profile in TS is believed

to span over many cognitive domains (Kesler, 2007;

Hong et al., 2009). In particular, the arrow subtest

showed significant between-group differences, a finding

which is consistent with Green et al. (2014) who found

decreased arrows subtest scores in TS. The others sub-

tests are to the best of our knowledge potential new

discoveries and have not been investigated in TS.

4.2 Comparison of Multi-Table and Single-Table

Analysis

Our single-table analysis is a global analysis describ-

ing cognition and morphometry with one variable each,

whereas our multi-table analysis is a local analysis on

individual voxel clusters and test scores. One can think

of the two analyses in terms of a global test, such as

testing for equal mean across multiple groups without

identifying which group drives the difference, and a lo-

cal test, such as two-sample pairwise tests. Analog to

hypothesis testing, not rejecting the global null hypoth-

esis does not imply that the local tests will not be re-

jected. It is more helpful to consider it as providing two

levels of analysis. Best practice would be to perform

both analyses and to form an opinion considering both

results.

5 Conclusion

In this article, we present a combined statistical anal-

ysis of neuroanatomy and cognition in girls with TS

and healthy controls. The estimated canonical variables

show aberrant associations located in the occipital lobe

and a wide range of cognitive tests.

Sparse CCA in combination with a cluster size test

statistic yields a meaningful dimension reduction from

thousands of voxels to a few voxel clusters. We showed

that multi-table analysis can be used in combination

with permutation tests to assign p-values to sets of

meaningful coefficients. This is a very promising path

for complex neuropsychiatric disease research given that

pairwise association tests cannot capture the multivari-

ate nature of the data. For neuropsychiatric diseases

we expect to find multi-node pathways and thus our
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Fig. 5 Scatter plot of cluster size of Cluster 2 versus cognitive test scores. Points are participants. Lines are linear model fits.

presented multi-table method is a valid candidate ap-

proach. However, there is no “free lunch”, and the price

paid for increase in power is greater ambiguity in the

interpretation of the results.

As an alternative to sCCA, one can preprocess the

data matrices X and Y using PCA and reduce dimen-

sionality so that we have fewer components than obser-

vations and apply standard CCA (Smith et al., 2015).

This approach exploits the strong spatial correlation

structure in the data and allows one to reduce the di-

mensionality. However it involves two choices: first, one

has to choose the right number of components to retain,

and second, one has to select the top most important

features and ignore small but still nonzero features. By

assuming sparsity we can avoid both subjective choices

and select appropriate regularizations using data driven

permutation tests.

Another option would be to split the data into two

pairs of data tables, compute two separate sCCA’s, and

construct a test statistic that contrasts canonical vari-

ables. Our experiments with this approach showed that

it is challenging to match canonical variables from sep-

arate sCCA optimizations into one consistent analysis.

However, if such a matching could be found it would

provide a more direct separation between groups.

We imputed missing values in the cognitive sub-

tests and computed the average dataset over all im-

puted datasets. As it is well known, this underestimates

the variability. To test how sensitive our results are to

imputation, we repeated the analysis five times with

different random seeds. The repeated analyses selected

the same clusters and mostly the same cognitive tests.

In the manuscript, we show the most conservative re-

sult. In the supplementary materials, we report all five

analyses.

The construction of Jacobian determinant maps in-

volves several processing steps (ACPC alignment, re-

sampling, bias field correction, skull stripping, and reg-

istration). Each step can impact our final statistical

conclusions. In future work we aim to better quantify

uncertainty in neuroimaging pipelines and how uncer-

tainty can be propagated to the analysis level.

Our goal here was not predictive, we have not as-

signed a response status to either the behavioral tests

or the anatomical measurements; we have only looked

for TS-aberrant associations.

Interactions between neuroanatomy and cognition

can change with age and throughout developmental stages.

Such changes can be unrelated to TS. We are currently

collecting longitudinal data to investigate how associa-

tions change over time.
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Fig. 6 PCA of brain morphometry measurements. Left: Each shapes is one participant projected onto PC1 and PC2. Right:
In red, the 10% largest (positive) coefficients in the PC1 loadings. In blue, the 10% smallest (negative) coefficients in the PC1
loadings. Blue brain regions are larger in the TS group and smaller in the healthy control group. Red brain regions are larger
in the healthy control group and smaller in the TS group.

It is critical to extend our understanding of brain-

cognition associations to advance the field of clinical

neuropsychiatry with the hope of designing new tar-

geted interventions for disorders and diseases such as

TS.

Information Sharing Statement

We implemented the R package braincog available on

GitHub.2 Our complete analysis workflow is in one Rmd

file called Interactions.Rmd also available on GitHub.3

All results and plots can be completely reproduced by

running:

R -e "rmarkdown::render(’Interactions.Rmd’)"

This command will produce an Interactions.html re-

port. The computation time for 1000 permutations on a

regular laptop with two CPU cores is about 5 days. We

recommend using a computing cluster reducing compu-

tation time to few hours. Our R pacakge braincog is

slurm cluster compatible.

The image registration steps including template and

Jacobian maps construction are available as batch scripts

and need to be run prior to the Rmd files.

Processed data are available upon request.

2 https://github.com/ChristofSeiler/braincog
3 https://github.com/ChristofSeiler/braincog_

manuscript
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