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About Me – My Background

• Assistant Professor (DKE, Maastricht University)
• Teaching:

• Statistics and Software Engineering courses
• Research:

• Statistical modeling of complex data
• Omics (CyTOF and RNA-seq) and imaging data (2d and 3d)
• Uncertainty quantification
• Convergence of computer simulations

• Postdoc in Statistics (Stanford University)
• PhD in

Computer Science (Inria, France) and
Biomedical Engineering (University of Bern, Switzerland)
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Topics of Today

1. What is Data Science?
2. Computer Simulations
3. The Bootstrap
4. Regularized Regression
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What is Data Science?



What?

• Sciences are primarily defined by their questions not their tools

• Example: Astrophysics is the discipline that
learns the composition of the stars,
not the discipline that uses the spectroscope

• Definition: Data science is the discipline that
describes,
predicts, and
makes causal inferences,
not the discipline that uses machine learning algorithms or
other technical tools
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Classification of Tasks

Source: Hernán, Hsu, and Healy (2019)
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Why Now?

• More data
• Cheaper computers
• The field itself has existed for 50 years already (Donoho 2017)
• Two cultures (Breiman 2001)

• Prediction: To be able to predict what the responses are going
to be to future input variables

• Inference: To [infer] how nature is associating the response
variables to the input variables

• The predictive culture is currently winning because of The
Common Task Framework
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The Common Task Framework

Donoho (2017):

(a) A publicly available training dataset involving, for each
observation, a list of (possibly many) feature measurements,
and a class label for that observation.

(b) A set of enrolled competitors whose common task is to infer a
class prediction rule from the training data.

(c) A scoring referee, to which competitors can submit their
prediction rule. The referee runs the prediction rule against a
testing dataset which is sequestered behind a Chinese wall.
The referee objectively and automatically reports the score
(prediction accuracy) achieved by the submitted rule.
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The Common Task Framework: Netflix Prize
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The Common Task Framework: Netflix Prize
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Prediction

• Google’s algorithm to diagnose diabetic retinopathy (after 54
ophthalmologists classified more than 120,000 images)

• Microsoft’s algorithm to predict pancreatic cancer months
before its usual diagnosis (using the online search histories of
3,000 users who were later diagnosed with cancer), and

• Facebook’s algorithm to detect users who may be suicidal
(based on posts and live videos)
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Prediction vs. Causal Inference

• Prediction: Large health records database to predict infant
mortality from clinical and lifestyle factors
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fa

nt
s 
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infant mortality
input

many features (columns):  
clinical and lifestyle (of mother) factors

output

predict
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Prediction vs. Causal Inference: Birth Weight Paradox

• Causality: Answer what if statements, e.g. if a mother stops
smoking during pregnancy does this reduce infant mortality
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infant mortality
input

select two features:
output

counterfactual 
prediction

smoking birth weight
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Prediction vs. Causal Inference: Birth Weight Paradox

Smoking

Unobserved Risk Factors:
e.g. Malnutrition, birth defects

Birth Weight

Mortality

−2

0

2

4

−2 0 2
Smoking

M
or

ta
lit

y

n = 500

lm(formula = Mortality ~ Smoking,
data = health_records) %>% tidy

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.0208 0.0453 0.460 0.646
## 2 Smoking 0.161 0.0429 3.75 0.000200

13



Prediction vs. Causal Inference: Birth Weight Paradox

Smoking

Unobserved Risk Factors:
e.g. Malnutrition, birth defects
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‘Birth Weight‘

high
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n = 500

lm(formula = Mortality ~ Smoking + `Birth Weight`,
data = health_records) %>% tidy

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -0.795 0.0526 -15.1 1.01e-42
## 2 Smoking -0.284 0.0387 -7.34 8.57e-13
## 3 `Birth Weight`low 1.65 0.0818 20.2 1.61e-66 14



Prediction vs. Causal Inference: Birth Weight Paradox

• Birth weight is strongly associated with both maternal smoking
and infant mortality

• Adjustment for it induces bias
• This bias is often referred to as the “birth weight paradox”:

• Low birth weight babies from mothers who smoked during
pregnancy have a lower mortality than those from mothers who
did not smoke during pregnancy (Hernández-Díaz, Schisterman,
and Hernán 2006)
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Computer Simulations



Computer Age

Books freely available:

• Efron and Hastie (2016): website
• Holmes and Huber (2019): website
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https://web.stanford.edu/~hastie/CASI/
http://web.stanford.edu/class/bios221/book/


Modern Statistics

To quote Andrew Gelman (source):

"If you wanted to do foundational research in
statistics in the mid-twentieth century, you had to
be bit of a mathematician, ... if you want to do
statistical research at the turn of the twenty-first
century, you have to be a computer programmer."
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Statistical Software

• RStudio Cloud for labs: https://rstudio.cloud/project/350555
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Simulations Example
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The Bootstrap



Height Example
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• Let’s assume that we measured all 18 year old Dutch male born
in 1996
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Height Example
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Sampling Distribution

• In real life, too expensive
• We can only take samples from the population
• Sample surveys: s1, s2, s3, s4, s5, and s6
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Height Example

s1

entire population

160 180 200

0

1000

2000

3000

0

10

20

30

40

height

co
un

t

Male Height in NL at 18 (Born in 1996)

• Compare population with sample s1
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Height Example
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Bootstrap Distribution

• Bootstrap samples: b1, b2, b3, b4, b5, and b6
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Height Example

survey
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Sampling vs. Bootstrap Distribution

• Compare distributions
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Main Idea

(Hesterberg 2015)
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Monte Carlo Simulations

• If number of observations is small,
then we can do exhaustive bootstrap

• If number of observations is large,
then we can do Monte Carlo simulations
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Law Schools Example
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• Sample correlation coefficient:

theta_hat = cor(law$LSAT, law$GPA)
theta_hat

## [1] 0.7763745
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Law Schools Example

• How accurate is this estimate?
• Let’s look at the bootstrap distribution:

draw_bootstrap_sample = function() {
n = dim(law)[1]
ind = sample(n, replace = TRUE)
return(cor(law[ind,]$LSAT, law[ind,]$GPA))

}
B = 40000
theta_star = replicate(B, draw_bootstrap_sample())

28



Law Schools Example

• Evaluate the correlation coefficient using a Monte Carlo
simulation:
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Monte Carlo Bootstrap Distribution
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Law Schools Example

• Create matrix of all (
2n − 1
n − 1

)
enumerations

• Using R package partitions:

n = 15
allCompositions = compositions(n,n)

• Each bootstrap sample has weight according to

Multinomial
(
#trials = n, probabilities = 1

n , . . . ,
1
n

)

• For more details and background: Diaconis and Holmes (1994)
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allCompositions[,1:10]

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 15 14 13 12 11 10 9 8 7 6
## [2,] 0 1 2 3 4 5 6 7 8 9
## [3,] 0 0 0 0 0 0 0 0 0 0
## [4,] 0 0 0 0 0 0 0 0 0 0
## [5,] 0 0 0 0 0 0 0 0 0 0
## [6,] 0 0 0 0 0 0 0 0 0 0
## [7,] 0 0 0 0 0 0 0 0 0 0
## [8,] 0 0 0 0 0 0 0 0 0 0
## [9,] 0 0 0 0 0 0 0 0 0 0
## [10,] 0 0 0 0 0 0 0 0 0 0
## [11,] 0 0 0 0 0 0 0 0 0 0
## [12,] 0 0 0 0 0 0 0 0 0 0
## [13,] 0 0 0 0 0 0 0 0 0 0
## [14,] 0 0 0 0 0 0 0 0 0 0
## [15,] 0 0 0 0 0 0 0 0 0 0
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Law Schools Example
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Law Schools Example
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Regularized Regression



Smoothing

Bone Mineral Density Data

−0.05

0.00

0.05

0.10

0.15

0.20

10 15 20 25
Age

C
ha

ng
e 

in
 B

M
D

High Bias − Low Variance

−0.05

0.00

0.05

0.10

0.15

0.20

10 15 20 25
Age

C
ha

ng
e 

in
 B

M
D

Optimal Smoothing

0.0

0.1

0.2

10 15 20 25
Age

C
ha

ng
e 

in
 B

M
D

Low Bias − High Variance

34



The Variance–Bias Tradeoff

(Wasserman 2006)
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Batting Average of Baseball Players
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Batting Average of Baseball Players

• Here Maximum Likelihood Estimate (MLE) is the sample mean
• The James-Stein Estimator (JS) Shrinks the MLE

TRUTH

JS

MLE

0.24 0.26 0.28 0.30

value

ty
pe
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James-Stein Theorem

• For d ≥ 3, the James-Stein estimator dominates the MLE in
terms of expected total squared error; that is

E
[∥∥∥µ̂JS − µ

∥∥∥2
]
< E

[∥∥∥µ̂MLE − µ
∥∥∥2
]

where xi |µi is drawn from a distribution as follows

xi |µi ∼ Normal(µi , 1).

• In our baseball example:

3.0× 10−3 < 4.4× 10−3

Thus a 31% improvement!
• For more R simulations:

https://bookdown.org/content/922/james-stein.html
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Ridge Regression

• Linear model
y = Xβ + ε

• We observe or define y and X
• Goal: Estimate β̂

• Idea: shrink the coefficients β̂ to zero (similarly to the
Baseball example where we shrank the individual batting
averages)

• The amount of shrinkage is controlled by a tuning parameter
λ (thus estimate depends on it: β̂λ)
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Ridge Regression: Computer Experiment
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• Simulation setup:
• Tuning parameter λ = 1
• Number of observations n = 20
• Let number of predictors p grow from 2 to 101
• Both y and X are random (no relationship)
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Cross-Validation

• Problem: model performance evaluated on training data
• Solution: train and evaluate on different data

(Holmes and Huber 2019) 41



The Variance–Bias Tradeoff

(Hastie, Tibshirani, and Friedman 2009)

42



Ridge Regression: Example

• How to pick λ?
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Ridge Regression: Example

• Use cross-validation:
1. Split data in folds
2. Fit model on all but one fold
3. Calculate error on the left-out fold
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Lasso Regression

• Linear model
y = Xβ + ε

• Idea: shrink the coefficients β to zero and set some of them
to zero completely (similarly to the Baseball example where
we shrank the individual batting averages)

• The amount of shrinkage is controlled by a tuning parameter
λ (thus estimate depends on it: β̂λ)
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Lasso Regression: Example
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Lab Session

• During the lab, we will get familiar with the following concepts:
1. R and R markdown
2. Plotting in R using package ggplot2
3. Computer simulations in R using function replicate
4. Construct bootstrap confidence intervals using function

quantile
5. Fitting regularized regression models in R using package glmfit

• We will use RStudio Cloud:
https://rstudio.cloud/project/350555
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